Skip to main content
Log in

Spontaneous gene flow and population structure in wild and cultivated chicory, Cichorium intybus L.

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Spontaneous gene flow between wild and cultivated chicory, Cichorium intybus L., may have implications for the genetic structure and evolution of populations and varieties. One aspect of this crop-wild gene flow is the dispersal of transgenes from genetically modified varieties, e.g. gene flow from GM chicory to natural chicory could have unwanted consequences. With the purpose to identify and quantify crop-wild gene flow in chicory, we analysed introgression in 19 wild chicory populations and 16 accessions of chicory varieties and landraces distributed across Northern, Central and Mediterranean Europe. The analysis used 281 AFLP markers and 75 SSAP markers giving a total of 356 polymorphic markers. Results from model based assignments with the program STRUCTURE indicated many incidents of recent gene flow. Gene flow was observed both between cultivars and wild populations, between landraces and wild populations, between different wild populations as well as between cultivars. Population structure visualized by distance-based clustering showed a North–South geographical structuring of the wild populations, and a general grouping of the cultivars corresponding to known origin. The results indicated, however, that the structuring between the two groups of wild and cultivated types was weak. As crop and wild recipients are genetically close and genes are transferred between the two types rather frequently, focus on mitigating crop-wild gene flow should be increased, before transgenic varieties are cultivated openly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andersen NS, Poulsen G, Andersen BA, Kiær LP, D’Hertefeldt T, Wilkinson MJ, Jørgensen RB (2008) Processes affecting genetic structure and conservation—a case study of wild and cultivated Brassica rapa. Genet Resour Crop Evol. doi:10.1007/s10722-008-9354-6

  • Bonin A, Bellemain E, Bronken Eidesen P, Pompanon F, Brochmann C, Taberlet P (2004) How to track and assess genotyping errors in population genetics studies. Mol Ecol 13:3261–3273

    Article  PubMed  CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:42309

    Google Scholar 

  • Eenink AH (1981) Compatibility and incompatibility in witloof-chicory (Cichorium intybus L.). 2. The incompatibility system. Euphytica 30:77–85

    Article  Google Scholar 

  • Ellstrand NC (2001) When transgenes wander, should we worry? Plant Physiol 125:1543–1545

    Article  PubMed  CAS  Google Scholar 

  • Ellstrand NC, Prentice HC, Hancock JF (1999) Gene flow and introgression from domesticated plants into their wild relatives. Annu Rev Ecol Syst 30:539–563

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet JG (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  PubMed  CAS  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    PubMed  CAS  Google Scholar 

  • Felsenstein J (1993) PHYLIP, Phylogenetic inference package, version 3.5.7. A computer program distributed by the author. Department of genetics, University of Washington, Seattle, USA. Available from http://evolution.genetics.washington.edu/phylip.html

  • Fjellheim S, Rognli OA (2005) Genetic diversity within and among Nordic meadow fescue (Festuca pratensis Huds.) cultivars determined on the basis of AFLP markers. Crop Sci 45:2081–2086

    Article  CAS  Google Scholar 

  • Gemeinholzer B, Bachmann K (2005) Examining morphological and molecular diagnostic character states of Cichorium intybus L. (Asteraceae) and C. spinosum L. Pl Syst Evol 253:105–123

    Article  CAS  Google Scholar 

  • Johannessen MM, Mikkelsen TN, Jørgensen RB (2002) CO2 exploitation and genetic diversity in winter varieties of oilseed rape (Brassica napus); varieties of tomorrow. Euphytica 128:75–86

    Article  Google Scholar 

  • Kiær LP, Philipp M, Jørgensen RB, Hauser TP (2007) Genealogy, morphology and fitness of spontaneous hybrids between wild and cultivated chicory (Cichorium intybus). Heredity 99:112–120

    Article  PubMed  Google Scholar 

  • Kiers AM (2000) Endive, chicory and their wild relatives. A systematic and phylogenetic study of Cichorium (Asteraceae). Gorteria Suppl 5:1–78

    Google Scholar 

  • Legendre P, Makarenkov V (2002) Reconstruction of biogeographic and evolutionary networks using reticulograms. Syst Biol 51:199–216

    Article  PubMed  Google Scholar 

  • Lynch M, Milligan BG (1994) Analysis of population genetic structure with RAPD markers. Mol Ecol 3:91–99

    Article  PubMed  CAS  Google Scholar 

  • Makarenkov V, Legendre P (2004) From a phylogenetic tree to a reticulated network. J Comput Biol 11:195–212

    Article  PubMed  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • Reynolds J, Weir BS, Cockerham CC (1983) Estimation for the co-ancestry coefficient: basis for a short-term genetic distance. Genetics 105:767–779

    PubMed  Google Scholar 

  • Rick CM (1953) Hybridization between chicory and endive. Proc Am Soc Hort Sci 61:459–466

    Google Scholar 

  • Rosenberg NA, Burke T, Elo K, Feldman MW, Freidlin PJ, Groenen MAM, Hillel J, Mäki-Tanila A, Tixier-Boichard M, Vignal A, Wimmers K, Weigend S (2001) Empirical evaluation of genetic clustering methods using multilocus genotypes from 20 chicken breeds. Genetics 159:699–713

    PubMed  CAS  Google Scholar 

  • Rosenberg NA, Pritchard JK, Weber JL, Cann HM, Kenneth KK, Lev A, Zhivotovsky LA, Feldman MW (2002) Genetic structure of human populations. Science 298:2381–2385

    Article  PubMed  CAS  Google Scholar 

  • Ryder EJ (1999) Lettuce, endive and chicory. Crop production science in horticulture, vol 7. CABI Publishing, CAB International, New York

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Schoofs J, de Langhe E (1988) Chicory (Cichorium intybus L.). In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 6. Crops II. Springer-Verlag, Berlin/Heidelberg

    Google Scholar 

  • Shim SI, Jørgensen RB (2000) Genetic structure in cultivated and wild carrots (Daucus carota L.) revealed by AFLP analysis. Theor Appl Genet 101:227–233

    Article  CAS  Google Scholar 

  • Simmonds NW (1976) Evolution of crop plants. Longman, London

    Google Scholar 

  • Sørensen BS, Kiær LP, Jørgensen RB, Hauser TP (2007) The temporal development in a hybridizing population of wild and cultivated chicory (Cichorium intybus L.). Mol Ecol 16:3292–3298

    Article  PubMed  Google Scholar 

  • Syed NH, Flavell AJ (2007) Sequence-specific amplification polymorphisms (SSAPs): a multi-locus approach for analyzing transposon insertions. Nat Protoc 1:2746–2752

    Article  Google Scholar 

  • Syed NH, Sureshsundar S, Wilkinson MJ, Bhau BS, Cavalcanti JJV, Flavell AJ (2005) Ty1-copia retrotransposon-based SSAP marker development in Cashew (Anacardium occidentale L). Theor Appl Genet 110:1195–1202

    Article  PubMed  CAS  Google Scholar 

  • Van Cutsem P, du Jardin P, Boutte Beauwens T, Jacqmin S, Vekemans X (2003) Distinction between cultivated and wild chicory gene pools using AFLP markers. Theor Appl Gen 107:713–718

    Article  Google Scholar 

  • Vekemans X (2001) AFLPsurv V.1.0. A software for genetic diversity analysis with AFLP population data, distributed by the author, xvekema@ulb.ac.be, Université Libre de Bruxelles

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Friters A, Pot J, Paleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  PubMed  CAS  Google Scholar 

  • Zhivotovsky LA (1999) Estimating population structure in diploids with multilocus dominant DNA markers. Mol Ecol 8:907–913

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The EU project ANGEL, “Analysis of gene flow from crop to wild forms in lettuce and chicory and its population-ecological consequences in the context of GM-crop biosafety”, QLK3-CT-2001-01657, supported this work. F. Felber and R. Guadagnuolo were partially funded by the National Centre of Competence in Research (NCCR) Plant Survival, research programme of the Swiss National Science Foundation. We thank Anouk Béguin for help with the analyses and Dr. Guillaume Besnard for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. B. Jørgensen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiær, L.P., Felber, F., Flavell, A. et al. Spontaneous gene flow and population structure in wild and cultivated chicory, Cichorium intybus L.. Genet Resour Crop Evol 56, 405–419 (2009). https://doi.org/10.1007/s10722-008-9375-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-008-9375-1

Keywords

Navigation