Skip to main content
Log in

The ectomycorrhizal fungus Scleroderma bermudense alleviates salt stress in seagrape (Coccoloba uvifera L.) seedlings

  • Original Paper
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

The purpose of this study was to test the capacity of the ectomycorrhizal (ECM) fungus, Scleroderma bermudense, to alleviate saline stress in seagrape (Coccoloba uvifera L.) seedlings. Plants were grown over a range (0, 200, 350 and 500 mM) of NaCl levels for 12 weeks, after 4 weeks of non-saline pre-treatment under greenhouse conditions. Growth and mineral nutrition of the seagrape seedlings were stimulated by S. bermudense regardless of salt stress. Although ECM colonization was reduced with increasing NaCl levels, ECM dependency of seagrape seedlings increased. Tissues of ECM plants had significantly increased concentrations of P and K but lower Na and Cl concentrations than those of non-ECM plants. Higher K concentrations in the leaves of ECM plants suggested a higher osmoregulating capacity of these plants. Moreover, the water status of ECM plants was improved despite their higher evaporative leaf surface. The results suggest that the reduction in Na and Cl uptake together with a concomitant increase in P and K absorption and a higher water status in ECM plants may be important salt-alleviating mechanisms for seagrape seedlings growing in saline soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Al-Karaki GN (2000) Growth of mycorrhizal tomato and mineral acquisition under salt stress. Mycorrhiza 10:51–54

    Article  CAS  Google Scholar 

  • Al-Karaki GN, Hammad R, Rusan M (2001) Response of two tomato cultivars differing in salt tolerance to inoculation with mycorrhizal fungi under salt stress. Mycorrhiza 11:43–47

    Article  CAS  Google Scholar 

  • Augé RM (2001) Water relations, drought and vesicular–arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3–42

    Article  Google Scholar 

  • Bandou E (2005) Diversité et fonctionnement des symbioses ectomycorhiziennes de Coccoloba uvifera (L.) L. en situation de stress salin et hydrique. Master of Science thesis, UAG, p 36

  • Berthomieu P, Conejéro G, Nublat A, Brackenbury WJ, Lambert C, Savio C, Uozumi N, Oiki S, Yamada K, Cellier F, Gosti F, Simonneau T, Essah PA, Tester M, Véry AA, Sentenac H, Casse F (2003) Functional analysis of AtHKT1 in Arabidopsis shows that Na+ recirculation by the phloem is crucial for salt tolerance. EMBO J 22:2004–2014

    Article  PubMed  CAS  Google Scholar 

  • Bois G, Bertrand A, Piché Y, Fung M, Khasa DP (2006) Growth, compatible solute and salt accumulation of five mycorrhizal fungal species grown over a range of NaCl concentrations. Mycorrhiza 16:99–109

    Article  PubMed  CAS  Google Scholar 

  • Brundrett M, Bougher N, Dell B, Grove T, Malajczuk N (1996) Working with mycorrhizas in forestry and agriculture. In: Lynch P (ed) ACIAR Monograph 32. Canberra, Australia, pp117–118

    Google Scholar 

  • Chen DM, Ellul S, Herdman K, Cairnay JWG (2001) Influence of salinity on biomass production by Australian Pisolithus spp. isolates. Mycorrhiza 11:231–236

    Article  CAS  Google Scholar 

  • Dixon RK, Rao MV, Garg VK (1993) Salt stress affects in vitro growth and in situ symbioses of ectomycorrhizal fungi. Mycorrhiza 3:63–68

    Article  Google Scholar 

  • Feng G, Zhang FS, Li XL, Tian CY, Tang C, Rengel Z (2002) Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. Mycorrhiza 12:185–190

    Article  PubMed  CAS  Google Scholar 

  • Gagnon J, Haycock KA, Roth JM, Felman DS, Finzer WF (1989) Super ANOVA didacticiel. In: Abacus Concepts Inc. (ed) Les modèles linéaires généralisées. Berkeley, CA, USA, pp1–47

  • Giri B, Kapoor R, Mukerji KG (2003) Influence of arbuscular mycorrhizal fungi and salinity on growth, biomass, and mineral nutrition of Acacia auriculiformis. Mycorrhiza 38:170–175

    Google Scholar 

  • Giri B, Mukerji KG (2004) Mycorrhizal inoculant alleviates salt stress in Sesbania aegyptiaca and Sesbania grandiflora under field conditions: evidence for reduced sodium and improved magnesium uptake. Mycorrhiza 14:307–312

    Article  PubMed  Google Scholar 

  • Gupta R, Krishnamurthy KV (1996) Response of mycorrhizal and nonmycorrhizal Arachis hypogaea to NaCl and acid stress. Mycorrhiza 6:145–149

    Article  CAS  Google Scholar 

  • Guzman G, Ramirez-Guillén F, Miller OK, Lodge DJ, Baroni TJ (2004) Scleroderma stellatum versus Scleroderma bermudense: the status of Scleroderma echinatum and the first record of Veligaster nitidum from the Virgin Islands. Mycologia 96:1370–1379

    Google Scholar 

  • Hewitt EJ (1966) Sand and water culture methods used in the study of plant nutrition. Technical communications. N° 22, 2nd edn. revised. Commonwealth Agricultural Bureau, London

    Google Scholar 

  • Hutchison LJ (1990) Studies on the systematics of ectomycorrhizal fungi in axenic culture. IV. The effect of some selected fungi toxic compounds upon linear growth. Can J Bot 68:2172–2178

    CAS  Google Scholar 

  • Juniper S, Abbott L (1993) Vesicular–arbuscular mycorrhizas and soil salinity. Mycorrhiza 4:45–57

    Article  Google Scholar 

  • Kernaghan G, Hambling B, Fung M, Khasa D (2002) In vitro selection of Boreal ectomycorrhizal fungi for use in reclamation of saline–alkaline habitats. Restor Ecol 10:1–9

    Article  Google Scholar 

  • Kreisel K (1971) Clave para la identificacion de los macromicetos de Cuba. La Habana: Ser. A, Ciencas Biologicas 16, Universidad de la Habana, p 101

    Google Scholar 

  • Larcher W (1995) Physiological plant ecology: ecophysiology and stress physiology of functional groups. In: Springer (ed) Third edition, pp396–409

  • Marx DH (1969) The influence of ectotrophic mycorrhizal fungi on the resistance of pine roots to pathogenic infections. I. Antagonism of mycorrhizal fungi to root pathogenic fungi and soil bacteria. Phytopathology 59:153–163

    Google Scholar 

  • Miller OK, Lodge DJ, Baroni TJ (2000) New and interesting ectomycorrhizal fungi from Puerto Rico, Mona, and Guana Islands. Mycologia 92:558–570

    Google Scholar 

  • Mushin TM, Zwiazek JJ (2002) Colonization with Hebeloma crustuliniforme increases water conductance and limits shoot sodium uptake in white spruce (Picea glauca) seedlings. Plant Soil 238:217–225

    Article  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell and Environment 25:239–250

    Article  CAS  Google Scholar 

  • Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167:645–663

    Article  PubMed  CAS  Google Scholar 

  • Novozamsky VJG, Huba R, Van Vark W (1983) A novel digestion technique for multi-element plant analysis. Commun Soil Sci Plant Anal 14:239–249

    Article  CAS  Google Scholar 

  • Ojala JC, Jarrell WM, Menge JA, Johnson ELV (1983) Influence of mycorrhizal fungi on the mineral nutrition and yield of onion in saline soil. Agron J 75:255–259

    Article  CAS  Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60:324–349

    Article  PubMed  CAS  Google Scholar 

  • Parrota JA (1994) Coccoloba uvifera (L.) L., seagrape, uva de playa. Research note SOITF-SM-74. U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station, New Orleans, LA. p 5

    Google Scholar 

  • Pegler DN (1983) Agaric flora of the Lesser Antilles. Kew Bull Add Ser 9, p 668

    Google Scholar 

  • Plenchette C, Fortin JA, Furlan V (1983) Growth response of several plant species to mycorrhizae in a soil of moderate P-fertility. I. Mycorrhizal dependency under field conditions. Plant Soil 70:199–209

    Article  CAS  Google Scholar 

  • Ryan J, Garabet S, Harmsen K, Rashid A (1996) A soil land plant analysis manual adapted for the West Asia and North Africa regions. ICARDA, Allepo

    Google Scholar 

  • Ruiz-Lozano JM, Azcon R, Gomez M (1996) Alleviation of salt stress by arbuscular-mycorrhizal Glomus species in Lactuca sativa plants. Physiol Plant 98:767–772

    Article  CAS  Google Scholar 

  • Ruiz-Lozano JM, Azcon R (2000) Symbiotic efficiency and infectivity of an autochthonous arbuscular mycorrhizal Glomus sp. from saline soils and Glomus deserticola under salinity. Mycorrhiza 10:137–143

    Article  CAS  Google Scholar 

  • Tian CY, Feng G, Li XL, Zhang FS (2004) Different effects of arbuscular mycorrhizal fungal isolates from saline or non-saline soil on salinity tolerance of plants. Appl Soil Ecol 26:143–148

    Article  Google Scholar 

  • Yan-Melo AM, Saggin OJ, Maia LC (2003) Tolerance of mycorrhized banana (Musa sp. cv. Pacovan) plantlets to saline stress. Agr Eco Env 95:343–348

    Article  Google Scholar 

  • Zall DM, Fisher D, Garner MQ (1956) Photometric determination of chloride in water. Anal Chem 28:1665–1668

    Article  CAS  Google Scholar 

  • Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6:441–445

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank the anonymous referees for the valuable comments and revising the English in the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Bâ.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bandou, E., Lebailly, F., Muller, F. et al. The ectomycorrhizal fungus Scleroderma bermudense alleviates salt stress in seagrape (Coccoloba uvifera L.) seedlings. Mycorrhiza 16, 559–565 (2006). https://doi.org/10.1007/s00572-006-0073-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-006-0073-6

Keywords

Navigation