Skip to main content

Advertisement

Log in

Trees and Insects Have Microbiomes: Consequences for Forest Health and Management

  • Forest Entomology (B Castagneyrol, Section Editor)
  • Published:
Current Forestry Reports Aims and scope Submit manuscript

A Correction to this article was published on 29 April 2023

This article has been updated

Abstract

Purpose of Review

Forest research has shown for a long time that microorganisms influence tree-insect interactions, but the complexity of microbial communities, as well as the holobiont nature of both trees and insect herbivores, has only recently been taken fully into account by forest entomologists and ecologists. In this article, we review recent findings on the effects of tree-insect-microbiome interactions on the health of tree individuals and discuss whether and how knowledge about tree and insect microbiomes could be integrated into forest health management strategies. We then examine the effects tree-insect-microbiome interactions on forest biodiversity and regeneration, highlighting gaps in our knowledge at the ecosystem scale.

Recent Findings

Multiple studies show that herbivore damage in forest ecosystems is clearly influenced by tripartite interactions between trees, insects and their microbiomes. Recent research on the plant microbiome indicates that microbiomes of planted trees could be managed at several stages of production, from seed orchards to mature forests, to improve the resistance of forest plantations to insect pests. Therefore, the tree microbiome could potentially be fully integrated into forest health management strategies.

Summary

To achieve this aim, future studies will have to combine, as has long been done in forest research, holistic goals with reductionist approaches. Efforts should be made to improve our understanding of how microbial fluxes between trees and insects determine the health of forest ecosystems, and to decipher the underlying mechanisms, through the development of experimental systems in which microbial communities can be manipulated. Knowledge about tree-insect-microbiome interactions should then be integrated into spatial models of forest dynamics to move from small-scale mechanisms to forest ecosystem-scale predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Change history

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Aukema JE, Leung B, Kovacs K, Chivers C, Britton KO, Englin J, et al. Economic impacts of non-native forest insects in the continental United States. Gratwicke B, editor. PLoS ONE. 2011;6:e24587.

    Article  CAS  Google Scholar 

  2. Boyd IL, Freer-Smith PH, Gilligan CA, Godfray HCJ. The consequence of tree pests and diseases for ecosystem services. Science. 2013;342:1235773.

    Article  CAS  Google Scholar 

  3. Walton. Provincial-level projection of the current mountain pine beetle outbreak. 2012. https://www.for.gov.bc.ca/ftp/hre/external/!publish/web/bcmpb/year9/BCMPB.v9.BeetleProjection.Update.pdf:

  4. Kozlov MV, Zvereva EL. Background insect herbivory: impacts patterns and methodology. Progress in Botany. 2017;79:313–55.

    Google Scholar 

  5. Theis KR, Dheilly NM, Klassen JL, Brucker RM, Baines JF, Bosch TCG, et al. Getting the hologenome concept right: an eco-evolutionary framework for hosts and their microbiomes. mSystems. 2016;1:e00028-16.

    Article  Google Scholar 

  6. Brand JM, Bracke JW, Britton LN, Markovetz AJ, Barras SJ. Bark beetle pheromones: Production of verbenone by a mycangial fungus of Dendroctonus frontalis. J. Chem. Ecol. 1976;2:195–9.

    Article  CAS  Google Scholar 

  7. Engel P, Moran NA. The gut microbiota of insects - diversity in structure and function. FEMS Microbiol. Rev. 2013;37:699–735.

    Article  CAS  Google Scholar 

  8. Madden JL. Behavioural responses of parasites to the symbiotic fungus associated with Sirex noctilio. Nature. 1968;218:189–90.

    Article  Google Scholar 

  9. Mason CJ, Jones AG, Felton GW. Co-option of microbial associates by insects and their impact on plant-folivore interactions. Plant Cell & Environment. 2019;42:1078–86.

    Article  CAS  Google Scholar 

  10. Hannula SE, Zhu F, Heinen R, Bezemer TM. Foliar-feeding insects acquire microbiomes from the soil rather than the host plant. Nature Communications. 2019;10:1–9.

    Article  CAS  Google Scholar 

  11. Strullu-Derrien C, Selosse M-A, Kenrick P, Martin FM. The origin and evolution of mycorrhizal symbioses: from palaeomycology to phylogenomics. New Phytologist. 2018;220:1012–30.

    Article  Google Scholar 

  12. Lemanceau P, Barret M, Mazurier S, Mondy S, Pivato B, Fort T, et al. Plant communication with associated microbiota in the spermosphere rhizosphere and phyllosphere. Advances in Botanical Research. 2017:101–33.

  13. Shade A, Jacques M-A, Barret M. Ecological patterns of seed microbiome diversity transmission, and assembly. Current Opinion in Microbiology. 2017;37:15–22.

    Article  Google Scholar 

  14. Vacher C, Hampe A, Porté AJ, Sauer U, Compant S, Morris CE. The phyllosphere: microbial jungle at the plant-climate interface. Annual Review of Ecology Evolution, and Systematics. 2016;47:1–24.

    Article  Google Scholar 

  15. Berendsen RL, Pieterse CMJ, Bakker PAHM. The rhizosphere microbiome and plant health. Trends in Plant Science. 2012;17:478–86.

    Article  CAS  Google Scholar 

  16. Brader G, Compant S, Vescio K, Mitter B, Trognitz F, Ma L-J, et al. Ecology and genomic insights into plant-pathogenic and plant-nonpathogenic endophytes. Annual Review of Phytopathology. 2017;55:61–83.

    Article  CAS  Google Scholar 

  17. Berg G, Rybakova D, Fischer D, Cernava T, Vergès M-CC, Charles T, et al. Microbiome definition re-visited: old concepts and new challenges. Microbiome. 2020;8:103 A reference article for the concepts of ‘microbiome’ and ‘microbiota’.

    Article  Google Scholar 

  18. Vandenkoornhuyse P, Quaiser A, Duhamel M, Le VA, Dufresne A. The importance of the microbiome of the plant holobiont. New Phytol. 2015;206:1196–206.

    Article  Google Scholar 

  19. Hacquard S, Schadt CW. Towards a holistic understanding of the beneficial interactions across the Populus microbiome. New Phytologist. 2014;205:1424–30.

    Article  Google Scholar 

  20. Fernandez-Conradi P, Jactel H, Robin C, Tack AJM, Castagneyrol B. Fungi reduce preference and performance of insect herbivores on challenged plants. Ecology. 2018;99:300–11 A meta-analysis showing that the effects of fungal pathogens on insect herbivores differ between necrotrophic and biotrophic pathogens.

    Article  Google Scholar 

  21. Gange AC, Koricheva J, Currie AF, Jaber LR, Vidal S. Meta-analysis of the role of entomopathogenic and unspecialized fungal endophytes as plant bodyguards. New Phytol. 2019;223:2002–10 A meta-analysis showing that both entomopathogenic and non-entomopathogenic plant endophytes have a negative effect on insect herbivores.

    Article  CAS  Google Scholar 

  22. Koricheva J, Gange AC, Jones T. Effects of mycorrhizal fungi on insect herbivores: a meta-analysis. Ecology. 2009;90:2088–97.

    Article  Google Scholar 

  23. Döring TF, Pautasso M, Finckh MR, Wolfe MS. Concepts of plant health - reviewing and challenging the foundations of plant protection. Plant Pathology. 2011;61:1–15.

    Article  Google Scholar 

  24. Pineda A, Kaplan I, Bezemer TM. Steering soil microbiomes to suppress aboveground insect pests. Trends in Plant Science. 2017;22(9):770–8 This opinion paper explains why and how soil microbes should be integrated into crop management strategies.

    Article  CAS  Google Scholar 

  25. Pieterse CMJ, Zamioudis C, Berendsen RL, Weller DM, Wees SCMV, Bakker PAHM. Induced systemic resistance by beneficial microbes. Ann Rev Phytopathol. 2014;52:347–75.

    Article  CAS  Google Scholar 

  26. War AR, Paulraj MG, Ahmad T, Buhroo AA, Hussain B, Ignacimuthu S, et al. Mechanisms of plant defense against insect herbivores. Plant Signaling & Behavior. 2012;7:1306–20.

    Article  Google Scholar 

  27. Pangesti N, Pineda A, Pieterse CMJ, Dicke M, van Loon JJA. Two-way plant mediated interactions between root-associated microbes and insects: from ecology to mechanisms. Front Plant Sci. 2013;4:414.

    Article  Google Scholar 

  28. Augustyniuk-Kram A, Kram KJ. Entomopathogenic fungi as an important natural regulator of insect outbreaks in forests (review). In: Blanco JA, editor. Forest Ecosystems - More than Just Trees: InTech; 2012.

  29. Vega FE. The use of fungal entomopathogens as endophytes in biological control: a review. Mycologia. 2018;110:4–30 A comprehensive review on fungal endophytic entomopathogens.

    Article  Google Scholar 

  30. Araújo JPM, Hughes DP. Diversity of entomopathogenic fungi. Genetics and Molecular Biology of Entomopathogenic Fungi. 2016:1–39.

  31. McKinnon AC, Saari S, Moran-Diez ME, Meyling NV, Raad M, Glare TR. Beauveria bassiana as an endophyte: a critical review on associated methodology and biocontrol potential. BioControl. 2016;62:1–17.

    Article  Google Scholar 

  32. Petrini O. Fungal endophytes of tree leaves. In: Andrews JH, Hirano SS, editors. Microbial ecology of leaves. New York, NY: Springer New York; 1991. p. 179–97.

    Chapter  Google Scholar 

  33. Carroll G. Fungal endophytes in stems and leaves: from latent pathogen to mutualistic symbiont. Ecology. 1988;69:2–9.

    Article  Google Scholar 

  34. Wilson D, Carroll GC. Avoidance of high-endophyte space by gall-forming insects. Ecology. 1997;78:2153–63.

    Article  Google Scholar 

  35. Wilson D. Fungal endophytes which invade insect galls: insect pathogens, benign saprophytes, or fungal inquilines? Oecologia. 1995;103:255–60.

    Article  Google Scholar 

  36. Faeth SH, Hammon KE. Fungal endophytes and phytochemistry of oak foliage: determinants of oviposition preference of leafminers? Oecologia. 1996;108:728–36.

    Article  Google Scholar 

  37. Faeth SH, Hammon KE. Fungal Endophytes in Oak Trees: Long-term patterns of abundance and associations with leafminers. Ecology. 1997a;78:810–9.

    Article  Google Scholar 

  38. Faeth SH, Hammon KE. Fungal endophytes in oak trees: experimental analyses of interactions with leafminers. Ecology. 1997b;78:820–7.

    Article  Google Scholar 

  39. Bamisile BS, Dash CK, Akutse KS, Keppanan R, Wang L. Fungal endophytes: beyond herbivore management. Front Microbiol. 2018;9:544.

    Article  Google Scholar 

  40. Terhonen E, Blumenstein K, Kovalchuk A, Asiegbu FO. Forest tree microbiomes and associated fungal endophytes: functional roles and impact on forest health. Forests. 2019;10:42.

    Article  Google Scholar 

  41. Tanney JB, McMullin DR, Miller JD. Toxigenic foliar endophytes from the Acadian forest. In: Pirttilä AM, Frank AC, editors. Endophytes of forest trees. Cham: Springer International Publishing; 2018. p. 343–81. A review of insecticidal toxins produced by forest foliar endophytes in conifers.

    Chapter  Google Scholar 

  42. Frasz SL, Walker AK, Nsiama TK, Adams GW, Miller JD. Distribution of the foliar fungal endophyte Phialocephala scopiformis and its toxin in the crown of a mature white spruce tree as revealed by chemical and qPCR analyses. Canadian Journal of Forest Research. 2014;44:1138–43.

    Article  CAS  Google Scholar 

  43. Humphrey PT, Nguyen TT, Villalobos MM, Whiteman NK. Diversity and abundance of phyllosphere bacteria are linked to insect herbivory. Molecular Ecology. 2014;23:1497–515.

    Article  CAS  Google Scholar 

  44. Groen SC, Humphrey PT, Chevasco D, Ausubel FM, Pierce NE, Whiteman NK. Pseudomonas syringae enhances herbivory by suppressing the reactive oxygen burst in Arabidopsis. Journal of Insect Physiology. 2016;84:90–102.

    Article  CAS  Google Scholar 

  45. Saleem M, Meckes N, Pervaiz ZH, Traw MB. Microbial interactions in the phyllosphere increase plant performance under herbivore biotic stress. Frontiers in Microbiology. 2017;8:41.

    Article  Google Scholar 

  46. Karamanoli K, Kokalas V, Koveos DS, Junker RR, Farré-Armengol G. Bacteria affect plant-mite interactions via altered scent emissions. Journal of Chemical Ecology. 2020:01147–9.

  47. Pineda A, Zheng S-J, van Loon JJA, Pieterse CMJ, Dicke M. Helping plants to deal with insects: the role of beneficial soil-borne microbes. Trends in Plant Science. 2010;15:507–14.

    Article  CAS  Google Scholar 

  48. Bennett AE, Alers-Garcia J, Bever JD. Three-way interactions among mutualistic mycorrhizal fungi plants, and plant enemies: hypotheses and synthesis. The American Naturalist. 2006;167:141–52.

    Article  Google Scholar 

  49. Tao L, Ahmad A, de Roode JC, Hunter MD. Arbuscular mycorrhizal fungi affect plant tolerance and chemical defences to herbivory through different mechanisms. Journal of Ecology. 2016;104:561–71.

    Article  Google Scholar 

  50. Kempel A, Schmidt AK, Brandl R, Schädler M. Support from the underground: induced plant resistance depends on arbuscular mycorrhizal fungi. Functional Ecology. 2010;24:293–300.

    Article  Google Scholar 

  51. Gehring CA, Whitham TG. Herbivore-driven mycorrhizal mutualism in insect-susceptible pinyon pine. Nature. 1991;353:556–7.

    Article  Google Scholar 

  52. Del Vecchio TA, Gehring CA, Cobb NS, Whitham TG. Negative effects of scale insect herbivory on the ectomycorrhizae of juvenile pinyon pine. Ecology. 1993;74:2297–302.

    Article  Google Scholar 

  53. Gehring CA, Whitham TG. Interactions between aboveground herbivores and the mycorrhizal mutualists of plants. Trends Ecol Evol (Amst). 1994;9:251–5.

    Article  CAS  Google Scholar 

  54. Watanabe H, Tokuda G. Cellulolytic systems in insects. Annu. Rev. Entomol. 2010;55:609–32.

    Article  CAS  Google Scholar 

  55. Geib SM, Filley TR, Hatcher PG. Hoover K, Carlson JE, Jimenez-Gasco M del M, et al. Lignin degradation in wood-feeding insects. Proc Natl Acad Sci USA. 2008;105:12932–7.

    Article  CAS  Google Scholar 

  56. Hajek AE, Nielsen C, Kepler RM, Long SJ, Castrillo L. Fidelity among Sirex woodwasps and their fungal symbionts. Microbial Ecology. 2013;65:753–62.

    Article  Google Scholar 

  57. Skelton J, Johnson AJ, Jusino MA, Bateman CC, Li Y, Hulcr J. A selective fungal transport organ (mycangium) maintains coarse phylogenetic congruence between fungus-farming ambrosia beetles and their symbionts. Proceedings of the Royal Society B: Biological Sciences. 2019;286:20182127.

    Article  CAS  Google Scholar 

  58. Six DL. The bark beetle holobiont: why microbes matter. Journal of Chemical Ecology. 2013;39:989–1002.

    Article  CAS  Google Scholar 

  59. Six DL. Ecological and evolutionary determinants of bark beetle fungus symbioses. Insects. 2012;3:339–66.

    Article  Google Scholar 

  60. Hulcr J, Stelinski LL. The ambrosia symbiosis: from evolutionary ecology to practical management. Annual Review of Entomology. 2017;62:285–303.

    Article  CAS  Google Scholar 

  61. Hammerbacher A, Schmidt A, Wadke N, Wright LP, Schneider B, Bohlmann J, et al. A common fungal associate of the spruce bark beetle metabolizes the stilbene defenses of Norway spruce. Plant Physiology. 2013;162:1324–36.

    Article  CAS  Google Scholar 

  62. Davis TS, Hofstetter RW, Foster JT, Foote NE, Keim P. Interactions between the yeast Ogataea pini and filamentous fungi associated with the western pine beetle. Microbial Ecology. 2010;61:626–34.

    Article  Google Scholar 

  63. Douglas AE. Multiorganismal insects: diversity and function of resident microorganisms. Annual Review of Entomology. 2015;60:17–34.

    Article  CAS  Google Scholar 

  64. Vanderpool D, Bracewell RR, McCutcheon JP. Know your farmer: Ancient origins and multiple independent domestications of ambrosia beetle fungal cultivars. Molecular Ecology. 2017;27:2077–94.

    Article  Google Scholar 

  65. Biedermann PHW, Vega FE. Ecology and evolution of insect-fungus mutualisms. Annual Review of Entomology. 2020;65:431–55.

    Article  CAS  Google Scholar 

  66. Manzano-Mari’n A, Coeur d’acier A, Clamens A-L, Orvain C, Cruaud C, Barbe V, et al. Serial horizontal transfer of vitamin-biosynthetic genes enables the establishment of new nutritional symbionts in aphids’ di-symbiotic systems. The ISME Journal. 2019;14:259–73.

    Article  Google Scholar 

  67. Husník F, Chrudimský T, Hypša V. Multiple origins of endosymbiosis within the Enterobacteriaceae (γ-Proteobacteria): convergence of complex phylogenetic approaches. BMC Biol. 2011;9:1–18.

    Article  Google Scholar 

  68. Adams AS, Jordan MS, Adams SM, Suen G, Goodwin LA, Davenport KW, et al. Cellulose-degrading bacteria associated with the invasive woodwasp Sirex noctilio. ISME J. 2011;5:1323–31.

    Article  CAS  Google Scholar 

  69. Delalibera I Jr, Handelsman J, Raffa KF. Contrasts in cellulolytic activities of gut microorganisms between the wood borer, Saperda vestita (Coleoptera: Cerambycidae), and the bark beetles, Ips pini and Dendroctonus frontalis (Coleoptera: Curculionidae). Environmental entomology. 2005;34:541–7.

    Article  Google Scholar 

  70. Scully ED, Geib SM, Carlson JE, Tien M, McKenna D, Hoover K. Functional genomics and microbiome profiling of the Asian longhorned beetle (Anoplophora glabripennis) reveal insights into the digestive physiology and nutritional ecology of wood-feeding beetles. BMC Genomics. 2014;15:1096.

    Article  Google Scholar 

  71. Scully ED, Geib SM, Mason CJ, Carlson JE, Tien M, Chen H-Y, et al. Host-plant induced changes in microbial community structure and midgut gene expression in an invasive polyphage (Anoplophora glabripennis). Scientific Reports. 2018;8:9620.

    Article  Google Scholar 

  72. Ayayee PA, Larsen T, Rosa C, Felton GW, Ferry JG, Hoover K. Essential amino acid supplementation by gut microbes of a wood-feeding cerambycid. Environmental Entomology. 2015;45:66–73.

    Article  Google Scholar 

  73. Morales-Jiménez J, de León AV-P, García-Domínguez A, Martínez-Romero E, Zúñiga G, Hernández-Rodríguez C. Nitrogen-fixing and uricolytic bacteria associated with the gut of Dendroctonus rhizophagus and Dendroctonus valens (Curculionidae: Scolytinae). Microbial Ecology. 2013;66:200–10.

    Article  Google Scholar 

  74. Mittapalli O, Bai X, Mamidala P, Rajarapu SP, Bonello P, Herms DA. Tissue-specific transcriptomics of the exotic invasive insect pest emerald ash borer (Agrilus planipennis). PLoS ONE. 2010;5:e13708.

    Article  Google Scholar 

  75. Adams AS, Aylward FO, Adams SM, Erbilgin N, Aukema BH, Currie CR, et al. Mountain pine beetles colonizing historical and naïve host trees are associated with a bacterial community highly enriched in genes contributing to terpene metabolism. Applied and Environmental Microbiology. 2013;79:3468–75.

  76. Boone CK, Keefover-Ring K, Mapes AC, Adams AS, Bohlmann J, Raffa KF. Bacteria associated with a tree-killing insect reduce concentrations of plant defense compounds. Journal of Chemical Ecology. 2013;39:1003–6.

    Article  CAS  Google Scholar 

  77. Howe M, Keefover-Ring K, Raffa KF. Pine engravers carry bacterial communities whose members reduce concentrations of host monoterpenes with variable degrees of redundancy specificity, and capability. Environmental Entomology. 2018;47:638–45.

    Article  CAS  Google Scholar 

  78. Berasategui A, Salem H, Paetz C, Santoro M, Gershenzon J, Kaltenpoth M, et al. Gut microbiota of the pine weevil degrades conifer diterpenes and increases insect fitness. Molecular Ecology. 2017;26:4099–110.

  79. Cardoza YJ, Klepzig KD, Raffa KF. Bacteria in oral secretions of an endophytic insect inhibit antagonistic fungi. Ecological Entomology. 2006;31:636–45.

    Article  Google Scholar 

  80. Hajek AE, Morris EE, Hendry TA. Context-dependent interactions of insects and defensive symbionts: insights from a novel system in siricid woodwasps. Current Opinion in Insect Science. 2019;33:77–83.

    Article  Google Scholar 

  81. Scott JJ, Oh D-C, Yuceer MC, Klepzig KD, Clardy J, Currie CR. Bacterial protection of beetle-fungus mutualism. Science. 2008;322:63–3.

  82. Broderick NA, Raffa KF, Handelsman J. Midgut bacteria required for Bacillus thuringiensis insecticidal activity. Proceedings of the National Academy of Sciences. 2006;103:15196–9.

    Article  CAS  Google Scholar 

  83. Gonzalez-Escobedo R, Briones-Roblero CI, Pineda-Mendoza RM, Rivera-Orduña FN, Zúñiga G. Bacteriome from Pinus arizonica and P. durangensis: diversity comparison of assemblages, and overlapping degree with the gut bacterial community of a bark beetle that kills pines. Frontiers in. Microbiology. 2018;9.

  84. Berasategui A, Axelsson K, Nordlander G, Schmidt A, Borg-Karlson A-K, Gershenzon J, et al. The gut microbiota of the pine weevil is similar across Europe and resembles that of other conifer-feeding beetles. Molecular Ecology. 2016;25:4014–31.

  85. Strano CP, Malacrinò A, Campolo O, Palmeri V. Influence of host plant on Thaumetopoea pityocampa gut bacterial community. Microbial Ecology. 2017;75:487–94.

    Article  Google Scholar 

  86. Landry M, Comeau AM, Derome N, Cusson M, Levesque RC. Composition of the spruce budworm (Choristoneura fumiferana) midgut microbiota as affected by rearing conditions. PLOS ONE. 2015;10:e0144077.

    Article  Google Scholar 

  87. Broderick NA, Raffa KF, Goodman RM, Handelsman J. Census of the bacterial community of the gypsy moth larval midgut by using culturing and culture-independent methods. Applied and environmental microbiology. 2004;70:293–300.

    Article  CAS  Google Scholar 

  88. Mason CJ, Campbell AM, Scully ED, Hoover K. Bacterial and fungal midgut community dynamics and transfer between mother and brood in the Asian longhorned beetle (Anoplophora glabripennis), an Invasive Xylophage. Microbial Ecology. 2019;77:230–42.

    Article  Google Scholar 

  89. Ghelardini L, Pepori AL, Luchi N, Capretti P, Santini A. Drivers of emerging fungal diseases of forest trees. Forest Ecology and Management. 2016;381:235–46.

    Article  Google Scholar 

  90. Linnakoski R, Forbes KM. Pathogens the hidden face of forest invasions by wood-boring insect pests. Frontiers in Plant Science. 2019;10.

  91. Chatterjee S, Almeida RPP, Lindow S. Living in two worlds: the plant and insect lifestyles of Xylella fastidiosa. Annual Review of Phytopathology. 2008;46:243–71.

    Article  CAS  Google Scholar 

  92. Bendix C, Lewis JD. The enemy within: phloem-limited pathogens. Molecular Plant Pathology. 2017;19:238–54.

    Article  Google Scholar 

  93. Marcone C. Current status of phytoplasma diseases of forest and landscape trees and shrubs. Journal of Plant Pathology. 2015;1:9–36.

    Google Scholar 

  94. Santini A, Battisti A. Complex insect pathogen interactions in tree pandemics. Frontiers in Physiology. 2019;10.

  95. Lamichhane JR, Venturi V. Synergisms between microbial pathogens in plant disease complexes: a growing trend. Frontiers in Plant Science. 2015;06.

  96. Wingfield MJ, Garnas JR, Hajek A, Hurley BP, de Beer ZW, Taerum SJ. Novel and co-evolved associations between insects and microorganisms as drivers of forest pestilence. Biological Invasions. 2016;18:1045–56.

    Article  Google Scholar 

  97. Denman S, Doonan J, Ransom-Jones E, Broberg M, Plummer S, Kirk S, et al. Microbiome and infectivity studies reveal complex polyspecies tree disease in Acute Oak Decline. ISME J. 2018;12:386–99 This paper combines culture-dependent and -independent approaches to demonstrate that AOD is a multispecies syndrome and addresses the role of microbial communities in forest diseases.

    Article  Google Scholar 

  98. Brown N, Inward DJG, Jeger M, Denman S. A review of Agrilus biguttatus in UK forests and its relationship with acute oak decline. Forestry. 2014;88:53–63.

    Article  Google Scholar 

  99. Alves M, Pereira A, Vicente C, Matos P, Henriques J, Lopes H, et al. The role of bacteria in pine wilt disease: insights from microbiome analysis. FEMS Microbiology Ecology. 2018;94.

  100. Vicente CSL, Nascimento FX, Espada M, Barbosa P, Hasegawa K, Mota M, et al. Characterization of bacterial communities associated with the pine sawyer beetle Monochamus galloprovincialis the insect vector of the pinewood nematode Bursaphelenchus xylophilus. FEMS Microbiology Letters. 2013;347(2):130–9.

    CAS  Google Scholar 

  101. Smets W, Koskella B. Microbiome: insect herbivory drives plant phyllosphere dysbiosis. Current Biology. 2020;30:412–4.

    Article  Google Scholar 

  102. Griffiths SM, Galambao M, Rowntree J, Goodhead I, Hall J, O’Brien D, et al. Complex associations between cross-kingdom microbial endophytes and host genotype in ash dieback disease dynamics. Journal of Ecology. 2019;108:291–309.

    Article  Google Scholar 

  103. Müller T, Müller M, Behrendt U, Stadler B. Diversity of culturable phyllosphere bacteria on beech and oak: the effects of lepidopterous larvae. Microbiological Research. 2003;158:291–7.

    Article  Google Scholar 

  104. Stadler B, Michalzik B. Effects of phytophagous insects on micro-organisms and throughfall chemistry in forested ecosystems: herbivores as switches for the nutrient dynamics in the canopy. Basic and Applied Ecology. 2000;1:109–16.

    Article  CAS  Google Scholar 

  105. Treu R, Karst J, Randall M, Pec GJ, Cigan PW, Simard SW, et al. Decline of ectomycorrhizal fungi following a mountain pine beetle epidemic. Ecology. 2014;95:1096–103.

    Article  Google Scholar 

  106. Menkis A, Marčiulynas A, Gedminas A, Lynikienė J, Povilaitienė A. High-throughput sequencing reveals drastic changes in fungal communities in the phyllosphere of Norway spruce (Picea abies) following invasion of the spruce bud scale (Physokermes piceae). Microbial Ecology. 2015;70:904–11.

    Article  CAS  Google Scholar 

  107. Pec GJ, Karst J, Taylor DL, Cigan PW, Erbilgin N, Cooke JEK, et al. Change in soil fungal community structure driven by a decline in ectomycorrhizal fungi following a mountain pine beetle (Dendroctonus ponderosae) outbreak. New Phytologist. 2016;213:864–73.

    Article  Google Scholar 

  108. Koivusaari P, Pohjanen J, Wäli PR, Ahonen SHK, Saravesi K, Markkola AM, et al. Different endophyte communities colonize buds of sprouts compared with mature trees of mountain birch recovered from moth herbivory. Tree Physiology. 2018;38:1437–44.

  109. Fernandez-Conradi P, Fort T, Castagneyrol B, Jactel H, Robin C. Fungal endophyte communities differ between chestnut galls and surrounding foliar tissues. Fungal Ecology . 2019:42:100876.

  110. Beule L, Grüning M, Karlovsky P, l-M-Arnold A. Changes of Scots pine phyllosphere and soil fungal communities during outbreaks of defoliating insects. Forests. 2017;8:316.

    Article  Google Scholar 

  111. Biere A, Goverse A. Plant-mediated systemic interactions between pathogens parasitic nematodes, and herbivores above- and belowground. Annual Review of Phytopathology. 2016;54:499–527.

    Article  CAS  Google Scholar 

  112. Moreira X, Abdala-Roberts L, Castagneyrol B. Interactions between plant defence signalling pathways: evidence from bioassays with insect herbivores and plant pathogens. Journal of Ecology. 2018;106:2353–64.

    Article  Google Scholar 

  113. Humphrey PT, Whiteman NK. Insect herbivory reshapes a native leaf microbiome. Nat. Ecol. Evol. 2020;4:221–9 An elegant experimental study demonstrating that insect herbivory per se influences the composition of the plant microbiome.

    Article  Google Scholar 

  114. Bakker MG, Manter DK, Sheflin AM, Weir TL, Vivanco JM. Harnessing the rhizosphere microbiome through plant breeding and agricultural management. Plant and Soil. 2012;360:1–13.

  115. Bakker MG, Manter DK, Sheflin AM, Weir TL, Vivanco JM. Harnessing the rhizosphere microbiome through plant breeding and agricultural management. Plant and Soil. 2012;360:1–13.

    Article  CAS  Google Scholar 

  116. Mülner P, Bergna A, Wagner P, Sarajlić D, Gstöttenmayr B, Dietel K, et al. Microbiota associated with sclerotia of soilborne fungal pathogens a novel source of biocontrol agents producing bioactive volatiles. Phytobiomes Journal. 2019;3:125–36.

    Article  Google Scholar 

  117. Witzell J, Martín JA. Endophytes and forest health. In: Pirttilä AM, Frank AC, editors. Endophytes of forest trees. Cham: Springer International Publishing; 2018. p. 261–82.

    Chapter  Google Scholar 

  118. Vivas M, Kemler M, Slippers B. Maternal effects on tree phenotypes: considering the microbiome. Trends in Plant Science. 2015;20:541–4.

    Article  CAS  Google Scholar 

  119. Vivas M, Wingfield MJ, Slippers B. Maternal effects should be considered in the establishment of forestry plantations. Forest Ecology and Management. 2020;460:117909.

    Article  Google Scholar 

  120. Douglas AE. Strategies for enhanced crop resistance to insect pests. Annual Review of Plant Biology. 2018;69:637–60.

    Article  CAS  Google Scholar 

  121. Hurwitz I, Fieck A, Read A, Hillesland H, Klein N, Kang A, et al. Paratransgenic control of vector borne diseases. International Journal of Biological Sciences. 2011;7:1334–44.

  122. Carrington LB, Tran BCN, Le NTH, Luong TTH, Nguyen TT, Nguyen PT, et al. Field- and clinically derived estimates of Wolbachia-mediated blocking of dengue virus transmission potential in Aedes aegypti mosquitoes. Proceedings of the National Academy of Sciences. 2017;115:361–6.

    Article  Google Scholar 

  123. Arora AK, Pesko KN, Quintero-Hernández V, Possani LD, Miller TA, Durvasula RV. A paratransgenic strategy to block transmission of Xylella fastidiosa from the glassy-winged sharpshooter Homalodisca vitripennis. BMC Biotechnology. 2018;18:50.

    Article  Google Scholar 

  124. Rivas-Franco F, Hampton JG, Morán-Diez ME, Narciso J, Rostás M, Wessman P, et al. Effect of coating maize seed with entomopathogenic fungi on plant growth and resistance against Fusarium graminearum and Costelytra giveni. Biocontrol Sci Technol. 2019;29:877–900.

    Article  Google Scholar 

  125. Lacey LA, Grzywacz D, Shapiro-Ilan DI, Frutos R, Brownbridge M, Goettel MS. Insect pathogens as biological control agents: back to the future. Journal of Invertebrate Pathology. 2015;132:1–41.

    Article  CAS  Google Scholar 

  126. Tailor AJ, Joshi BH. Harnessing plant growth promoting rhizobacteria beyond nature: a review. Journal of Plant Nutrition. 2014;37:1534–71.

    Article  CAS  Google Scholar 

  127. Dessaux Y, Grandclément C, Faure D. Engineering the rhizosphere. Trends in Plant Science. 2016;21:266–78.

    Article  CAS  Google Scholar 

  128. Vannier N, Agler M, Hacquard S. Microbiota-mediated disease resistance in plants. Zipfel C, editor. PLOS Pathogens. 2019;15:e1007740.

    Article  CAS  Google Scholar 

  129. Toju H, Peay KG, Yamamichi M, Narisawa K, Hiruma K, Naito K, et al. Core microbiomes for sustainable agroecosystems. Nature Plants. 2018;4:247–57.

  130. Mitter B, Pfaffenbichler N, Flavell R, Compant S, Antonielli L, Petric A, et al. A new approach to modify plant microbiomes and traits by introducing beneficial bacteria at flowering into progeny seeds. Frontiers in Microbiology. 2017;8.

  131. Kenis M, Hurley BP, Colombari F, Lawson S, Jiang Hua S, Wilcken C, et al. Guide to the classical biological control of insect pests in planted and natural forests. FAO Forestry Papers. 2019;182.

  132. Xie S, Vallet M, Sun C, Kunert M, David A, Zhang X, et al. Biocontrol potential of a novel endophytic bacterium from mulberry (Morus) tree. Frontiers in Bioengineering and Biotechnology. 2020;7.

  133. Castrillo LA, Griggs MH, Vandenberg JD. Competition between biological control fungi and fungal symbionts of ambrosia beetles Xylosandrus crassiusculus and X. germanus (Coleoptera: Curculionidae): Mycelial interactions and impact on beetle brood production. Biological Control. 2016;103:138–46.

    Article  Google Scholar 

  134. Poudel R, Jumpponen A, Schlatter DC, Paulitz TC, Gardener BBM, Kinkel LL, et al. Microbiome networks: a systems framework for identifying candidate microbial assemblages for disease management. Phytopathology. 2016;106:1083–96.

    Article  CAS  Google Scholar 

  135. Vacher C, Tamaddoni-Nezhad A, Kamenova S, Peyrard N, Moalic Y, Sabbadin R, et al. Learning ecological networks from next-generation sequencing data. Ecosystem Services: From Biodiversity to Society, Part 2. Elsevier. 2016:1–39.

  136. Rohart F, Gautier B, Singh A, Cao K-AL. mixOmics: An R package for -omics feature selection and multiple data integration. PLoS Computational Biology. 2017;13:e1005752.

    Article  Google Scholar 

  137. Broderick NA, Vasquez E, Handelsman J, Raffa KF. Effect of clonal variation among hybrid poplars on susceptibility of gypsy moth (Lepidoptera: Lymantriidae) to Bacillus thuringiensis subsp. kurstaki. Forest Entomology. 2010;103:718–25.

    Google Scholar 

  138. Nelson R, Wiesner-Hanks T, Wisser R, Balint-Kurti P. Navigating complexity to breed disease-resistant crops. Nature Reviews Genetics. 2017;19:21–33.

    Article  Google Scholar 

  139. Busby PE, Soman C, Wagner MR, Friesen ML, Kremer J, Bennett A, et al. Research priorities for harnessing plant microbiomes in sustainable agriculture. PLoS Biology. 2017;15:e2001793.

    Article  Google Scholar 

  140. Gopal M, Gupta A. Microbiome selection could spur next-generation plant breeding strategies. Frontiers in Microbiology. 2016;7.

  141. Pérez-Jaramillo JE, Mendes R, Raaijmakers JM. Impact of plant domestication on rhizosphere microbiome assembly and functions. Plant Molecular Biology. 2015;90:635–44.

    Article  Google Scholar 

  142. Weese DJ, Heath KD, Dentinger BTM, Lau JA. Long-term nitrogen addition causes the evolution of less-cooperative mutualists. Evolution. 2015;69:631–42.

    Article  CAS  Google Scholar 

  143. Pineda A, Kaplan I, Hannula SE, Ghanem W, Bezemer TM. Conditioning the soil microbiome through plant-soil feedbacks suppresses an aboveground insect pest. New Phytologist. 2020;226:595–608.

    Article  CAS  Google Scholar 

  144. Wubs ERJ, van der Putten WH, Bosch M, Bezemer TM. Soil inoculation steers restoration of terrestrial ecosystems. Nature Plants. 2016;2.

  145. Mina D, Pereira JA, Lino-Neto T, Baptista P. Epiphytic and endophytic bacteria on olive tree phyllosphere: exploring tissue and cultivar effect. Microbial Ecology. 2020;80:145–7.

    Article  Google Scholar 

  146. Elfstrand M, Zhou L, Baison J. Olson Åke, Lundén K, Karlsson B, et al. Genotypic variation in Norway spruce correlates to fungal communities in vegetative buds. Molecular Ecology. 2019;29:199–213.

    Article  Google Scholar 

  147. Messal M, Slippers B, Naidoo S, Bezuidt O, Kemler M. Active fungal communities in asymptomatic Eucalyptus grandis stems differ between a susceptible and resistant clone. Microorganisms. 2019;7:375.

    Article  CAS  Google Scholar 

  148. Mason CJ, Pfammatter JA, Holeski LM, Raffa KF. Foliar bacterial communities of trembling aspen in a common garden. Can. J. Microbiol. 2015;61:143–9.

    Article  CAS  Google Scholar 

  149. Fukami T. Historical contingency in community assembly: integrating niches species pools, and priority effects. Annual Review of Ecology, Evolution, and Systematics. 2015;46:1–23.

    Article  Google Scholar 

  150. Vivas M, Kemler M, Mphahlele MM, Wingfield MJ, Slippers B. Maternal effects on phenotype resistance and the structuring of fungal communities in Eucalyptus grandis. Environmental and Experimental Botany. 2017;140:120–7.

    Article  Google Scholar 

  151. Xing H-Q, Ma J-C, Xu B-L, Zhang S-W, Wang J, Cao L, et al. Mycobiota of maize seeds revealed by rDNA -ITS sequence analysis of samples with varying storage times. MicrobiologyOpen. 2018;7:e00609.

  152. van der Voort M, Kempenaar M, van Driel M, Raaijmakers JM, Mendes R. Impact of soil heat on reassembly of bacterial communities in the rhizosphere microbiome and plant disease suppression. Ecology Letters. 2016;19:375–82.

    Article  Google Scholar 

  153. Wei Z, Gu Y, Friman V-P, Kowalchuk GA, Xu Y, Shen Q, et al. Initial soil microbiome composition and functioning predetermine future plant health. Sci Adv. 2019;5:eaaw0759 An elegant experimental study showing the importance of initial soil microbiome composition for future plant health and discussing soil microbiome management strategies.

    Article  CAS  Google Scholar 

  154. Amend AS, Cobian GM, Laruson AJ, Remple K, Tucker SJ, Poff KE, et al. Phytobiomes are compositionally nested from the ground up. PeerJ. 2019;7:e6609.

    Article  Google Scholar 

  155. Hu L, Robert CAM, Cadot S, Zhang X, Ye M, Li B, et al. Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota. Nature Communications. 2018;9:2738.

    Article  Google Scholar 

  156. Erb M, Huber M, Robert CAM, Ferrieri AP, Machado RAR, Arce CCM. The role of plant primary and secondary metabolites in root-herbivore behaviour nutrition and physiology. Advances in Insect Physiology. 2013:53–95.

  157. Ayres E, Steltzer H, Berg S, Wallenstein MD, Simmons BL, Wall DH. Tree species traits influence soil physical chemical, and biological properties in high elevation forests. PLoS ONE. 2009;4:e5964.

    Article  Google Scholar 

  158. Gao C, Shi N-N, Liu Y-X, Peay KG, Zheng Y, Ding Q, et al. Host plant genus-level diversity is the best predictor of ectomycorrhizal fungal diversity in a Chinese subtropical forest. Molecular Ecology. 2013;22:3403–14.

    Article  Google Scholar 

  159. Urbanová M, Šnajdr J, Baldrian P. Composition of fungal and bacterial communities in forest litter and soil is largely determined by dominant trees. Soil Biology and Biochemistry. 2015;84:53–64.

    Article  Google Scholar 

  160. Laforest-Lapointe I, Paquette A, Messier C, Kembel SW. Leaf bacterial diversity mediates plant diversity and ecosystem function relationships. Nature. 2017;546:145–7.

    Article  CAS  Google Scholar 

  161. Helander M, Wäli P, Kuuluvainen T, Saikkonen K. Birch leaf endophytes in managed and natural boreal forests. Canadian Journal of Forest Research. 2006;36:3239–45.

    Article  Google Scholar 

  162. Nguyen D, Boberg J, Cleary M, Bruelheide H, Hönig L, Koricheva J, et al. Foliar fungi of Betula pendula: impact of tree species mixtures and assessment methods. Scientific Reports. 2017;7.

  163. Nguyen D, Boberg J, Ihrmark K, Stenström E, Stenlid J. Do foliar fungal communities of Norway spruce shift along a tree species diversity gradient in mature European forests? Fungal Ecology. 2016;23:97–108.

    Article  Google Scholar 

  164. Lynikienė J, Marčiulynienė D, Marčiulynas A, Gedminas A, Vaičiukynė M, Menkis A. Managed and unmanaged Pinus sylvestris forest stands harbour similar diversity and composition of the phyllosphere and soil fungi. Microorganisms. 2020;8:259.

    Article  Google Scholar 

  165. Kãberl M, Dita M, Martinuz A, Staver C, Berg G. Agroforestry leads to shifts within the gammaproteobacterial microbiome of banana plants cultivated in Central America. Frontiers in Microbiology. 2015;6.

  166. Fausto C, Mininni AN, Sofo A, Crecchio C, Scagliola M, Dichio B, et al. Olive orchard microbiome: characterisation of bacterial communities in soil-plant compartments and their comparison between sustainable and conventional soil management systems. Plant Ecology & Diversity. 2018;11:597–610.

  167. Pascazio S, Crecchio C, Ricciuti P, Palese AM, Xiloyannis C, Sofo A. Phyllosphere and carposphere bacterial communities in olive plants subjected to different cultural practices. International Journal of Plant Biology. 2015;6.

  168. Wemheuer F, Berkelmann D, Wemheuer B, Daniel R, Vidal S, Daghela HBB. Agroforestry management systems drive the composition diversity, and function of fungal and bacterial endophyte communities in Theobroma cacao leaves. Microorganisms. 2020;8:405.

    Article  CAS  Google Scholar 

  169. Oliveira RJV. Endophytic fungal diversity in coffee leaves (Coffea arabica) cultivated using organic and conventional crop management systems. Mycosphere. 2014;5:523–30.

    Article  Google Scholar 

  170. Andrear O. White James Robert, Skaltsas Demetran, Newell Michaelj, Walsh Christophers. Impact of organic and conventional management on the phyllosphere microbial ecology of an apple crop. Journal of Food Protection. 2009;72:2321–5.

    Article  Google Scholar 

  171. Nisa H, Kamili AN, Nawchoo IA, Shafi S, Shameem N, Bandh SA. Fungal endophytes as prolific source of phytochemicals and other bioactive natural products: a review. Microbial Pathogenesis. 2015;82:50–9.

    Article  CAS  Google Scholar 

  172. Jaber LR, Ownley BH. Can we use entomopathogenic fungi as endophytes for dual biological control of insect pests and plant pathogens? Biological Control. 2018;116:36–45.

    Article  Google Scholar 

  173. Adams AS, Adams SM, Currie CR, Gillette NE, Raffa KF. Geographic variation in bacterial communities associated with the red turpentine beetle (Coleoptera: Curculionidae). Environ. Entomol. 2010;39:406–14.

    Article  Google Scholar 

  174. Aukema BH, Werner RA, Haberkern KE, Illman BL, Clayton MK, Raffa KF. Quantifying sources of variation in the frequency of fungi associated with spruce beetles: implications for hypothesis testing and sampling methodology in bark beetle–symbiont relationships. Forest Ecology and Management. 2005;217:187–202.

    Article  Google Scholar 

  175. Aukema BH, Zhu J, Moeller J, Rasmussen J, Raffa KF. Interactions between below-and above-ground herbivores drive a forest decline and gap-forming syndrome. Forest Ecology Management. 2010;259:374–82.

    Article  Google Scholar 

  176. Sullivan BT, Berisford CW. Semiochemicals from fungal associates of bark beetles may mediate host location behavior of parasitoids. J. Chem. Ecol. 2004;30:703–17.

    Article  CAS  Google Scholar 

  177. Boone CK, Six DL, Zheng Y, Raffa KF. Parasitoids and dipteran predators exploit volatiles from microbial symbionts to locate bark beetles. Environ. Entomol. 2008;37:150–61.

    Article  Google Scholar 

  178. Kandasamy D, Gershenzon J, Hammerbacher A. Volatile organic compounds emitted by fungal associates of conifer bark beetles and their potential in bark beetle control. J. Chem. Ecol. 2016;42:952–69.

    Article  CAS  Google Scholar 

  179. Frago E, Dicke M, Godfray HCJ. Insect symbionts as hidden players in insect-plant interactions. Trends in Ecology & Evolution. 2012;27:705–11.

    Article  Google Scholar 

  180. Sanders D, Kehoe R, van Veen FJF, McLean A, Godfray HCJ, Dicke M, et al. Defensive insect symbiont leads to cascading extinctions and community collapse. Ecology Letters. 2016;19:789–99.

  181. Frago E, Mala M, Weldegergis BT, Yang C, McLean A, Godfray HCJ, et al. Symbionts protect aphids from parasitic wasps by attenuating herbivore-induced plant volatiles. Nature Communications. 2017;8:1860.

  182. Cusumano A, Zhu F, Volkoff A-N, Verbaarschot P, Bloem J, Vogel H, et al. Parasitic wasp-associated symbiont affects plant-mediated species interactions between herbivores. Ecology Letters. 2018;21:957–67.

  183. Tack AJM, Gripenberg S, Roslin T. Cross-kingdom interactions matter: fungal-mediated interactions structure an insect community on oak. Ecology Letters. 2012;15:177–85.

    Article  Google Scholar 

  184. Hammer TJ, Van Bael SA. An endophyte-rich diet increases ant predation on a specialist herbivorous insect. Ecological Entomology. 2015;40:316–21.

    Article  Google Scholar 

  185. Griffin EA, Carson WP. Tree endophytes: cryptic drivers of tropical forest diversity. Endophytes of Forest Trees. 2018:63–103.

  186. Estrada C, Wcislo WT, Van Bael SA. Symbiotic fungi alter plant chemistry that discourages leaf-cutting ants. New Phytologist. 2013;198:241–51.

    Article  Google Scholar 

  187. Coblentz KE, Van Bael SA. Field colonies of leaf-cutting ants select plant materials containing low abundances of endophytic fungi. Ecosphere. 2013;4:66.

    Article  Google Scholar 

  188. Schuldt A, Bruelheide H, Buscot F, Assmann T, Erfmeier A, Klein AM, et al. Belowground top-down and aboveground bottom-up effects structure multitrophic community relationships in a biodiverse forest. Scientific Reports. 2017;7:4222.

  189. Hudson PJ, Dobson AP, Lafferty KD. Is a healthy ecosystem one that is rich in parasites? Trends in Ecology & Evolution. 2006;21:381–5.

    Article  Google Scholar 

  190. Bohan DA, Vacher C, Tamaddoni-Nezhad A, Raybould A, Dumbrell AJ, Woodward G. Next-generation global biomonitoring: large-scale automated reconstruction of ecological networks. Trends in Ecology & Evolution. 2017;32:477–87.

    Article  Google Scholar 

  191. Kristensen JÅ, Rousk J, Metcalfe DB. Below-ground responses to insect herbivory in ecosystems with woody plant canopies: A meta-analysis. J Ecol. 2019:1–14 A meta-analysis showing that insect herbivory drives belowground biogeochemical processes and communities.

  192. Saravesi K, Aikio S, Wäli PR, Ruotsalainen AL, Kaukonen M, Huusko K, et al. Moth outbreaks alter root-associated fungal communities in subarctic mountain birch forests. Microbial Ecology. 2015;69:788–97.

  193. van Bruggen AHC, Goss EM, Havelaar A, van Diepeningen AD, Finckh MR, Morris JG. One health - cycling of diverse microbial communities as a connecting force for soil plant, animal, human and ecosystem health. Science of The Total Environment. 2019;664:927–37.

    Article  Google Scholar 

  194. Lemanceau P, Blouin M, Muller D, Moënne-Loccoz Y. Let the core microbiota be functional. Trends in Plant Science. 2017;22:583–95.

    Article  CAS  Google Scholar 

  195. Vannier N, Mony C, Bittebiere A-K, Michon-Coudouel S, Biget M, Vandenkoornhuyse P. A microorganisms’ journey between plant generations. Microbiome. 2018;6:79.

    Article  Google Scholar 

  196. Connell JH. On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees. Dynamics of Populations. 1971;298:312.

    Google Scholar 

  197. Comita LS, Queenborough SA, Murphy SJ, Eck JL, Xu K, Krishnadas M, et al. Testing predictions of the Janzen-Connell hypothesis: a meta-analysis of experimental evidence for distance- and density-dependent seed and seedling survival. Gómez-Aparicio L, editor. Journal of Ecology. 2014;102:845–56.

  198. Benítez M-S, Hersh MH, Vilgalys R, Clark JS. Pathogen regulation of plant diversity via effective specialization. Trends in Ecology & Evolution. 2013;28:705–11.

    Article  Google Scholar 

  199. Jia S, Wang X, Yuan Z, Lin F, Ye J, Lin G, et al. Tree species traits affect which natural enemies drive the Janzen-Connell effect in a temperate forest. Nature Communications. 2020;11:286.

  200. Ganley RJ, Newcombe G. Fungal endophytes in seeds and needles of Pinus monticola. Mycological Research. 2006;110:318–27.

    Article  Google Scholar 

  201. Qi F, Jing T, Zhan Y. Characterization of endophytic fungi from Acer ginnala Maxim. in an artificial plantation: media effect and tissue-dependent variation. Heil M, editor. PLoS ONE. 2012;7:e46785.

    Article  CAS  Google Scholar 

  202. de la Bastide PY, LeBlanc J, Kong L, Finston T, May EM, Reich R, et al. Fungal colonizers and seed loss in lodgepole pine orchards of British Columbia. Botany. 2019;97:23–33.

  203. Morella NM, Zhang X, Koskella B. Tomato seed-associated bacteria confer protection of seedlings against foliar disease caused by Pseudomonas syringae. Phytobiomes Journal. 2019;3:177–90.

    Article  Google Scholar 

  204. Bergna A, Cernava T, Rändler M, Grosch R, Zachow C, Berg G. Tomato seeds preferably transmit plant beneficial endophytes. Phytobiomes Journal. 2018;2:183–93.

    Article  Google Scholar 

  205. Tyc O, Putra R, Gols R, Harvey JA, Garbeva P. The ecological role of bacterial seed endophytes associated with wild cabbage in the United Kingdom. Microbiology Open. 2019;9.

  206. Shugart HH, Foster A, Wang B, Druckenbrod D, Ma J, Lerdau M, et al. Gap models across micro- to mega-scales of time and space: examples of Tansley’s ecosystem concept. Forest Ecosystems. 2020;7.

Download references

Funding

Dr. Vacher and Dr. Schimann received funding from the INRAE Holoflux Metaprogramme (Holobrom project) and the LABEX CEBA (VERTIGE and DROUGHT projects; ANR-10-LABX-25-01) to study the tree microbiome and its vertical transmission. Dr. Vacher also received funding from the LABEX COTE (MICROMIC project; ANR-10-LABX-45), the ANR (NGB project; ANR-17-CE32-0011) and the Nouvelle-Aquitaine Region (Athene project, n°2016-1R20301-00007218) to study the foliar microbiome in forests. Dr Castagneyrol received funding from the European Union’s Horizon 2020 research and innovation programme for the project HOMED under grant agreement No. 771271. Dr Jousselin received funding from the Marie Skłodowska-Curie fellowship program H2020-MSCA-IF under grant agreement No. 746189 (MicroPhan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Corinne Vacher.

Ethics declarations

Human and Animal Rights and Informed Consent

This article contains no studies with human or animal subjects performed by any of the authors.

Conflict of Interest

Corinne Vacher, Heidy Schimann, Emmanuelle Jousselin and Bastien Castagneyrol declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Forest Entomology

The original online version of this article was revised to correct the author names. First names and last names are reversed.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vacher, C., Castagneyrol, B., Jousselin, E. et al. Trees and Insects Have Microbiomes: Consequences for Forest Health and Management. Curr Forestry Rep 7, 81–96 (2021). https://doi.org/10.1007/s40725-021-00136-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40725-021-00136-9

Keywords

Navigation