Skip to main content
Log in

Variations in physical and mechanical properties between tension and opposite wood from three tropical rainforest species

  • Original
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Abstract

Growth strains were measured in situ in nine trees of three species from a French Guiana tropical rainforest in a clearly active verticality restoration process. The aim was to detect tension wood within the samples. Wood specimens were cut in the vicinity of the growth strain measurements in order to determine the microfibril angle and some mechanical and physical properties. As suspected, tensile growth strain was much higher in tension wood zones, as shown by the slightly higher longitudinal modulus of elasticity. Conversely, tension wood showed reduced compression strength. Longitudinal shrinkage was much higher in tension wood than in opposite wood. Clear relationships between the microfibril angle and longitudinal properties were noted in comparison (i) with those observed in gymnosperm compression wood and (ii) with expected relationships from the organization of wood fibres cell wall structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abasolo WP, Yoshida M, Yamamoto H, Okuyama T (2000) Microfibril angle determination of Rattan fibers and its influence on the properties of the Cane. Holzforschung 54(4):437–442

    Article  CAS  Google Scholar 

  • Almeras T, Thibaut A, Gril J (2005) Effect of circumferential heterogeneity of wood maturation strain, modulus of elasticity and radial growth on the regulation of stem orientation in trees. Trees 19:457–467

    Article  Google Scholar 

  • Archer RR (1986) Growth stresses and strains in trees. Springer, Berlin

    Google Scholar 

  • Baillères H, Chanson B, Fournier M, Tollier MT, Monties B (1995) Structure, composition chimique et retraits de maturation du bois chez les clones d’eucalyptus. Ann Sci For 52:157–172

    Article  Google Scholar 

  • Barnett JR, Bonham VA (2004) Cellulose microfibril angle in the cell wall of wood fibres. Biol Rev 79(2):461–472

    Article  PubMed  CAS  Google Scholar 

  • Booker RE, Harrington J, Shiokura T (1998) Variation of Young’s modulus with microfibril angle, density and spiral grain. In: the Proceedings of the IAWA/IUFRO international workshop on the significance of microfibril angle to wood quality, pp 296–311

  • Bordonné PA (1989) Module dynamique et frottement intérieur dans le bois mesurés sur poutres flottantes en vibrations naturelles, Wood Science thesis, Institut National Polytechnique de Lorraine, p 110

  • Boyd JD (1977) Relationship between fibre morphology and shrinkage of wood. Wood Sci Technol 11:3–22

    Article  Google Scholar 

  • Brancheriau L, Bailleres H (2002) Natural vibration analysis of clear wooden beams: a theoretical review. Wood Sci Technol 36(4):347–365

    Article  CAS  Google Scholar 

  • Clair B (2001) Etude des propriétés mécaniques et du retrait au séchage du bois à l’échelle de la paroi cellulaire: essai de compréhension du comportement macroscopique paradoxal du bois de tension à couche gélatineuse. ENGREF-Montpellier, France

    Google Scholar 

  • Clair B, Jaouen G, Beauchêne J, Fournier M (2003a) Mapping radial, tangential and longitudinal shrinkages and its relation to tension wood in discs of the tropical tree Symphonia globulifera. Holzforschung 57(6):665–671

    Article  CAS  Google Scholar 

  • Clair B, Ruelle J, Thibaut B (2003b) Relationship between growth stresses, mechano-physical properties and proportion of fibre with gelatinous layer in chestnut (Castanea sativa Mill.). Holzforschung 57(2):189–195

    Article  CAS  Google Scholar 

  • Clair B, Ruelle J, Beauchene J, Prevost MF, Fournier M (2006a) Tension wood and opposite wood in 21 tropical rain forest species 1. Occurrence and efficiency of the G-layer. IAWA J 27(3):329–338

    Google Scholar 

  • Clair B, Ruelle J, Beauchêne J, Prevost MF, Fournier M (2006b) Tension wood and opposite wood in 21 tropical rainforest species. 1. About the presence of G layer. IAWA J 27(3):329–338

    Google Scholar 

  • Cote WA, Day AC, Timell TE (1969) A contribution to ultrastructure of tension wood fibers. Wood Sci Technol 3(4):257–271

    Article  Google Scholar 

  • Coutand C, Jeronimidis G, Chanson B, Loup C (2004) Comparison of mechanical properties of tension and opposite wood in Populus. Wood Sci Technol 38(1):11–24

    Article  CAS  Google Scholar 

  • Fisher JB, Stevenson JW (1981) Occurrence of reaction wood in branches of dicotyledons and its role in tree architecture. Bot Gaz 142(1):82–95

    Article  Google Scholar 

  • Fournier M, Chanson B, Thibaut B, Guitard D (1994) Measurements of residual growth strains at the stem surface. Observations on different species (in French). Ann For Sci 51(3):249–266

    Article  Google Scholar 

  • Fujita M, Saiki H, Harada H (1974) Electron microscopy of microtubules and cellulose microfibrils in secondary wall formation of poplar tension wood fibers. Mokuzai Gakkaishi 20(4):147–156

    Google Scholar 

  • Gindl W (2002) Comparing mechanical properties of normal and compression wood in Norway spruce: the role of lignin in compression parallel to the grain. Holzforschung 56(4):395–401

    Article  CAS  Google Scholar 

  • Haines DW, Leban JM, Herbe C (1996) Determination of Young’s modulus for spruce, fir and isotropic materials by the resonance flexure method with comparisons to static flexure and other dynamic methods. Wood Sci Technol 30(4):253–263

    Article  CAS  Google Scholar 

  • Huang YS, Chen SS, Kuo-Huang LL, Lee CM (2005) Growth strain in the trunk and branches of Chamaecyparis formosensis and its influence on tree form. Tree Physiol 25(9):1119–1126

    PubMed  Google Scholar 

  • Jourez B (1997a) Tension wood 1. Definition and distribution in the tree (in French) Biotechnol. Agron Soc Environ 1(2):100–112

    Google Scholar 

  • Jourez B (1997b) Tension wood 2. Quantitative evaluation, formation and role in the tree (in French). Biotechnol Agron Soc Environ 1(3):167–177

    Google Scholar 

  • Jourez B, Riboux A, Leclercq A (2001a) Anatomical characteristics of tension wood and opposite wood in young inclined stems of poplar (Populus euramericana cv “Ghoy”). IAWA J 22(2):133–157

    Google Scholar 

  • Jourez B, Riboux A, Leclercq A (2001b) Comparison of basic density and longitudinal shrinkage in tension wood and opposite wood in young stems of Populus euramericana cv Ghoy when subjected to a gravitational stimulus. Can J For Res 31:1676–1683

    Article  Google Scholar 

  • Kojima Y, Yamamoto H (2004) Properties of the cell wall constituents in relation to the longitudinal elasticity of wood—Part 2: origin of the moisture dependency of the longitudinal elasticity of wood. Wood Sci Technol 37(5):427–434

    Article  CAS  Google Scholar 

  • Norberg PH, Meier H (1966) Physical and chemical properties of the gelatinous layer in tension wood fibres of Aspen (Populus tremula L.). Holzforschung 20(6):174–178

    Article  CAS  Google Scholar 

  • Okai R, Frimpong-Mensah K, Yeboah D (2004) Characterization of strength properties of branchwood and stemwood of some tropical hardwood species. Wood Sci Technol 38(2):163–171

    Article  CAS  Google Scholar 

  • Okuyama T, Takeda H, Yamamoto H, Yoshida M (1998) Relation between growth stress and lignin concentration in the cell wall: ultraviolet microscopic spectral analysis. J Wood Sci 44(2):83–89

    Article  CAS  Google Scholar 

  • Onaka F (1949) Studies on compression and tension wood. Wood Res Bull Wood Res Inst Kyoto Univ Jpn 24(3):1–88

    Google Scholar 

  • Ruelle J, Clair B, Beauchêne J, Prevost MF, Fournier M (2006) Tension wood and opposite wood in 21 tropical rainforest species. 2. Comparison of some anatomical criteria”. IAWA J 27(4):341–376

    Google Scholar 

  • Ruelle J, Yamamoto H, Thibaut B (2007) Growth stresses and cellulose structural parameters in tension and normal wood from three tropical rainforest angiosperms species. BioResources 2(2):235–251

    CAS  Google Scholar 

  • Timell TE (1986) Compression wood in gymnosperms. Springer, Berlin

    Google Scholar 

  • Tsehaye A, Buchanan AH, Meder R, Newman RH, Walker JCF (1998) Microfibril angle: determining wood stiffness in radiata pine. In: the Proceedings of the IAWA/IUFRO international workshop on the significance of microfibril angle to wood quality, pp 323–336

  • Yamamoto H (1998) Generation mechanism of growth stresses in wood cell walls: roles of lignin deposition and cellulose microfibril during cell wall maturation. Wood Sci Technol 32(3):171–182

    CAS  Google Scholar 

  • Yamamoto H, Kojima Y (2002) Properties of cell wall constituents in relation to longitudinal elasticity of wood Part 1. Formulation of the longitudinal elasticity of an isolated wood fiber. Wood Sci Technol 36:55–74

    Article  CAS  Google Scholar 

  • Yamamoto H, Okuyama T, Yoshida M (1998) Growth stress generation and microfibril angle in reaction wood. Microfibril angle in wood. In: the Proceedings of the IAWA/IUFRO international workshop on the significance of microfibril angle to wood quality, pp 225–239

  • Yamamoto H, Kojima Y, Okuyama T, Abasolo WP, Gril J (2002) Origin of the biomechanical properties of wood related to the fine structure of the multi-layered cell wall. J Biomech Eng 124:432–440

    Article  PubMed  CAS  Google Scholar 

  • Yoshida M, Okuyama T (2002) Techniques for measuring growth stress on the xylem surface using strain and dial gauges. Holzforschung 56(5):461–467

    Article  CAS  Google Scholar 

  • Yoshida M, Okuda T, Okuyama T (2000) Tension wood and growth stress induced by artificial inclination in Liriodendron tulipifera Linn. and Prunus spachiana Kitamura f. ascendens Kitamura. Ann For Sci 57:739–746

    Article  Google Scholar 

  • Yoshida M, Ohta H, Yamamoto H, Okuyama T (2002) Tensile growth stress and lignin distribution in the cell walls of yellow poplar, Liriodendron tulipifera Linn. Trees Struct Funct 16(7):457–464

    CAS  Google Scholar 

  • Yoshizawa N, Inami A, Miyake S, Ishiguri F, Yokota S (2000) Anatomy and lignin distribution of reaction wood in two Magnolia species. Wood Sci Technol 34(3):183–196

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julien Ruelle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruelle, J., Beauchêne, J., Yamamoto, H. et al. Variations in physical and mechanical properties between tension and opposite wood from three tropical rainforest species. Wood Sci Technol 45, 339–357 (2011). https://doi.org/10.1007/s00226-010-0323-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-010-0323-9

Keywords

Navigation