Skip to main content

Advertisement

Log in

Virtual trees and light capture: a method for optimizing agroforestry stand design

  • Published:
Agroforestry Systems Aims and scope Submit manuscript

Abstract

In agroforestry systems, the distribution of light transmitted under tree canopies can be a limiting factor for the development of intercrops. The light available for intercrops depends on the quantity of light intercepted by tree canopies and, consequently, on the architecture of the tree species present. The influence of tree architecture on light transmission was analysed using dynamic 3D architectural models. The architectural analysis of Acacia mangium and Tectona grandis was performed in Indonesian agroforestry systems with trees aged from 1 to 3 years. 3D virtual trees were then generated with the AmapSim simulation software and 3D virtual experiments in which tree age, planting density, planting pattern and pruning intensity varied were reconstructed in order to simulate light available for the crop. Canopy closure of trees was more rapid in A. mangium than in T. grandis agroforestry systems; after 3 years the quantity of light available for A. mangium intercrops was three times lower than under T. grandis. Simulations with A. mangium showed that practices such as pruning and widening tree spacing enable to increase the total transmitted light within the stand. On T. grandis, modification of the tree row azimuth resulted in changes in the spatial and seasonal distribution of light available for the intercrops. These results are discussed in terms of agroforestry system management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. http://www.worldagroforestry.org/sea/Products/training/GroupTra/SAFODS/result.asp.

References

  • Barczi J, Rey H, Caraglio Y, De Reffye P, Barthélémy D, Qiao XD, Fourcaud T (2007) AMAPsim: an integrative whole-plant architecture simulator based on botanical knowledge. Ann Bot (Lond) 101:1125–1138. doi:10.1093/aob/mcm194

    Article  Google Scholar 

  • Barthélémy D (1991) Levels of organisation and repetition phenomena in seed plants. Acta Biotheor 39:309–323. doi:10.1007/BF00114184

    Article  Google Scholar 

  • Barthélémy D, Caraglio Y (2007) Plant architecture: a dynamic, multilevel and comprehensive approach to plant form, structure and ontogeny. Ann Bot (Lond) 99:375–407. doi:10.1093/aob/mcl260

    Article  Google Scholar 

  • Chelle M, Andrieu B (2007) Modelling the light environment of virtual crop canopies. In: Marcelis L, De Visser PHB, Struik P, Evers J (eds) Functional-structural plant modelling in crop production. Springer, Netherlands, pp 75–89

    Chapter  Google Scholar 

  • Dauzat J, Franck N, Rapidel B, Luquet D, Vaast P (2007) Simulation second international symposium on plant growth modeling, simulation, visualization and applications of ecophysiological processes on 3D virtual stands with the Archimed simulation platform. In: Fourcaud T, Zhang XP (eds) Proceedings of second international symposium on plant growth modeling, simulation, visualization and applications, PMA06, Los Alamos, 101–108

  • Dauzat J, Clouvel P, Luquet D, Martin P (2008) Using virtual plants to analyse the light-foraging efficiency of a low-density cotton crop. Ann Bot (Lond) 101:1153–1166. doi:10.1093/aob/mcm316

    Article  Google Scholar 

  • Fourcaud T, Lac P (2003) Numerical modelling of shape regulation and growth stresses in trees. Part I: an incremental static finite element formulation. Trees-Struct Funct 17:23–30

    Google Scholar 

  • Frazer GW, Canham CD, Lertzman KP (1999) Gap Light Analyzer (GLA) 2.0: Imaging software to extract canopy structure and gap light transmission indices from true-colour fisheye photographs: users manual and program documentation. Simon Fraser University, Burnaby, British Columbia, and the Institute of Ecosystems Studies, Millbrook, New York

  • Génard M, Dauzat J, Franck N, Lescourret F, Moitrier N, Vaast P, Vercambre G (2008) Carbon allocation in fruit trees: from theory to modelling. Trees-Struct Funct 22:269–282

    Google Scholar 

  • Godin C, Costes E, Caraglio Y (1997) Exploring plant topological structure with the AMAPmod software: an outline. Silva Fenn 31:357–368

    Google Scholar 

  • Hallé F, Oldeman RAA, Tomlinson PB (1978) Tropical trees and forests. An architectural analysis. Springer Verlag, Berlin

    Google Scholar 

  • Kapp GB, Beer J (1995) A comparison of agrisilvicultural systems with plantation forestry in the Atlantic lowlands of Costa Rica. Agrofor Syst 32:207–223. doi:10.1007/BF00711710

    Article  Google Scholar 

  • Lamanda N, Dauzat J, Jourdan C, Martin P, Malezieux E (2008) Using 3D architectural models to assess light availability and root bulkiness in coconut agroforestry systems. Agrofor Syst 72:63–74. doi:10.1007/s10457-007-9068-3

    Article  Google Scholar 

  • Leroy C (2005) Rôle de l’architecture dans l’interception lumineuse des couronnes de Tectona grandis et Acacia mangium. Utilisation pour la simulation des bilans radiatifs dans les systèmes agroforestiers. PhD thesis, Université Montpellier II (http://tel.ccsd.cnrs.fr/)

  • Leroy C, Laurans M, Dauzat J, Sabatier S, Auclair D (2005) Simulation of light transmission under Acacia mangium Willd. and Tectona grandis L. canopies and comparison with in situ measurements. In: Proceedings of International workshop on Smallholder AgroForestry Options for degraded Soils. Malang, Indonesia. International workshop on Smallholder AgroForestry Options for degraded Soils, Malang, Indonesia, 18–21 Aug 2005

  • Leroy C, Saint-André L, Auclair D (2007) Practical methods for non-destructive measurement of tree leaf area. Agrofor Syst 71:99–108. doi:10.1007/s10457-007-9077-2

    Article  Google Scholar 

  • Meredieu C, Caraglio Y, Saint-André L, de Coligny F, Barczi JF (2004) The advantages of coupling stand description from growth models to tree description from architectural models. In: Godin C, Hanan J, Kurth W, Lacointe A, Takenaka A, Prusinkiewicz P, DeJong TM, Beveridge C, Andrieu B (eds) Proceedings of the 4th International Workshop on Functional-Structural Plant Models, Montpellier, 7–11 June 2004

  • Mialet-Serra I, Dauzat J, Auclair D (2001) Using plant architectural models for estimation of radiation transfer in a coconut-based agroforestry system. Agrofor Syst 53:141–149. doi:10.1023/A:1013320419289

    Article  Google Scholar 

  • Reffye de P Dinouard P, Barthélemy D (1991) Modélisation et simulation de l’architecture de l’Orme du Japon Zelkova serrata (Thunb.) Makino (Ulmaceae) : la notion d’axe de référence. L’arbre. Biologie et Développement, 2ème Colloque International sur l’Arbre. Naturalia monspeliensa, Montpellier, France

  • Reynolds P, Simpson J, Thevathasan N, Gordon A (2007) Effects of tree competition on corn and soybean photosynthesis, growth, and yield in a temperate tree-based agroforestry intercropping system in southern Ontario, Canada. Ecol Eng 29:362–371. doi:10.1016/j.ecoleng.2006.09.024

    Article  Google Scholar 

  • Sinoquet H, Rivet P (1997) Measurement and visualization of the architecture of an adult tree based on a three-dimensional digitising device. Trees-Struct Funct 11:265–270

    Google Scholar 

  • Sitompul SM, Hairiah K, Haryanto Putri C, Sunaryo (2005) Smallholder agroforestry options for degraded soils (SAFODS): tree-soil-crop interactions of best bet tree-crop combinations. In: Proceedings of International workshop on Smallholder AgroForestry Options for degraded Soils. Malang, Indonesia, 18–21 Aug 2005

  • Van Noordwijk M, Lusiana B (1999) WaNuLCAS 1.0, a model of water, nutrient and light capture in agroforestry systems. Agrofor Syst 45:131–158. doi:10.1023/A:1006245605705

    Article  Google Scholar 

  • Zomboudré G, Zombré G, Ouedraogo M, Guinko S, Roy Macauley H (2005) Réponse physiologique et productivité des cultures dans un système agroforestier traditionnel : cas du maïs (Zea mays L.) associé au karité (Vitellaria paradoxa Gaertn.) dans la zone est du Burkina Faso. Biotechnol Agron Soc Environ 9:75–85

    Google Scholar 

Download references

Acknowledgments

This work was performed within the framework of the SAFODS project (Smallholder AgroForestry Options for Degraded Soils: Tree establishment in cropped fields) in Brawijawa university, Malang, East Java, Indonesia. It was partly funded by the EU contract ICA4-CT-2001-10092. AMAP (Botany and Computational Plant Architecture) is a joint research unit which associates CIRAD (UMR51), CNRS (UMR5120), INRA (UMR931), IRD (R123), and Montpellier 2 University (UM27); http://amap.cirad.fr/. The supports are gratefully acknowledged. We thank Y. Caraglio and T. Fourcaud for their relevant comments on the manuscript and two anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvie Sabatier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leroy, C., Sabatier, S., Wahyuni, N.S. et al. Virtual trees and light capture: a method for optimizing agroforestry stand design. Agroforest Syst 77, 37–47 (2009). https://doi.org/10.1007/s10457-009-9232-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10457-009-9232-z

Keywords

Navigation