Skip to main content
Log in

Viscoelastic properties of wood materials characterized by nanoindentation experiments

  • Original
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Abstract

The viscoelastic properties of the cell wall of the tropic hardwood Carapa procera are investigated by means of nanoindentation tests. Three types of nanoindentation tests are undertaken: creep, continuous stiffness measurement (CSM) and nanoscale dynamic mechanical analysis (Nano-DMA), corresponding to the increased loading rate and so the response of wood cell wall to the loading in a relatively large time scale. It is found that the creep rate is dependent on the applied stress and the relation can be described by the rule of power law. Regarding the dynamic properties (i.e., storage modulus and damping coefficient) in the frequency range of 10–240 Hz, it is shown that the storage modulus increases monotonically, while the damping coefficient decreases. By using the traditional dynamic mechanical thermal analysis as a reference method, the phase transition behavior of wood cell wall can be successfully characterized by the Nano-DMA in a large frequency scale. A dependence of the storage modulus and damping coefficient on the penetration depth is quantified by the CSM tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Asif SAS, Wahl KJ, Colton RJ (1999) Nanoindentation and contact stiffness measurement using force modulation with a capacitive load-displacement transducer. Rev Sci Instrum 70(5):2408–2413

    Article  CAS  Google Scholar 

  • Bower AF, Fleck NA, Needleman A, Ogbonna N (1993) Indentation of a power law creeping solid. Proc Math Phys Sci 441(1911):97–124

    Article  Google Scholar 

  • Bull SJ (2003) On the origins and mechanisms of the indentation size effect. Z Metallkd 94(7):787–792

    CAS  Google Scholar 

  • Chakravartula A, Komvopoulos K (2006) Viscoelastic properties of polymer surfaces investigated by nanoscale dynamic mechanical analysis. Appl Phys Lett 88:131901

    Article  Google Scholar 

  • Cheng L, Xia X, Yu W, Scriven LE, Gerberich WW (2000) Flat-punch indentation of viscoelastic material. J Polym Sci Part B 38:10–22

    Article  CAS  Google Scholar 

  • Fischer-Cripps AC (2006) Review of analysis and interpretation of nanoindentation test data. Surf Coat Tech 200(14–15):4153–4165

    Article  CAS  Google Scholar 

  • Furuta Y, Imanishi H, Kohara M, Yokoyama M, Obata Y, Kanayama K (2000) Thermal-softening properties of water-swollen wood (vii) the effects of lignin. Mokuzai Gakkaishi 46(2):133–137

    Google Scholar 

  • Gindl W, Gupta HS, Schoberl T, Lichtenegger HC, Fratzl P (2004) Mechanical properties of spruce wood cell walls by nanoindentation. Appl Phys A 79(8):2069–2073

    Article  CAS  Google Scholar 

  • Guitard D (1983) The wood materials: properties, technology, processing. Collection of lessons exempted during winter school on woods in Albe (68) from 24 to 29 January 1983, Association for the research on woods in Loraine (Association pour la Recherche sur le Bois en Lorraine (ARBOLOR)), p B1–94

  • Isaksson H, Nagao S, Malkiewicz M, Julkunen P, Nowak R, Jurvelin JS (2010) Precision of nanoindentation protocols for measurement of viscoelasticity in cortical and trabecular bone. J Biomech 43(12):2410–2417

    Article  PubMed  Google Scholar 

  • Kermouche G, Loubet JL, Bergheau JM (2007) Cone indentation of time-dependent materials: the effects of the indentation strain rate. Mech Mater 39(1):24–38

    Article  Google Scholar 

  • Konnerth J, Gierlinger N, Keckes J, Gindl W (2009) Actual versus apparent within cell wall variability of nanoindentation results from wood cell walls related to cellulose microfibril angle. J Mater Sci 44(16):4399–4406

    Article  CAS  Google Scholar 

  • Lee SH, Wang SQ, Pharr GM (2006) Time-dependent nano-mechanical properties of regenerated cellulose fiber and wood cell wall by continuous nanoindentation technique. Abstracts of Papers of the American Chemical Society, p 231

  • Liu T (1993) Creep of wood under a large-span of loads in constant and varying environments. Part 1. Experimental-observations and analysis. Holz Roh Werkst 51(6):400–405

    Article  Google Scholar 

  • Lu H, Wang B, Ma J, Huang G, Viswanathan H (2003) Measurement of creep compliance of solid polymers by nanoindentation. Mech Time-Depend Mater 7(3–4):189–207

    Article  Google Scholar 

  • Nix WD, Gao HJ (1998) Indentation size effects in crystalline materials: a law for strain gradient plasticity. J Mech Phys Solids 46(3):411–425

    Article  CAS  Google Scholar 

  • Obataya E, Ono T, Norimoto M (2000) Vibrational properties of wood along the grain. J Mater Sci 35(12):2993–3001

    Article  CAS  Google Scholar 

  • Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7(6):1564–1583

    Article  CAS  Google Scholar 

  • Saheb DN, Jog JP (1999) Natural fiber polymer composites: a review. Adv Polym Tech 18(4):351–363

    Article  CAS  Google Scholar 

  • Sugiyama M, Norimoto M (1996) Temperature dependence of dynamic viscoelasticities of chemically treated woods. Mokuzai Gakkaishi 42(11):1049–1056

    CAS  Google Scholar 

  • Sugiyama M, Obataya E, Norimoto M (1998) Viscoelastic properties of the matrix substance of chemically treated wood. J Mater Sci 33(14):3505–3510

    Article  CAS  Google Scholar 

  • Tweedie CA, Van Vliet KJ (2006) Contact creep compliance of viscoelastic materials via nanoindentation. J Mater Res 21(6):1576–1589

    Article  CAS  Google Scholar 

  • Tze WTY, Wang S, Rials TG, Pharr GM, Kelley SS (2007) Nanoindentation of wood cell walls: continuous stiffness and hardness measurements. Compos Part A Appl Sci Manuf 38(3):945–953

    Article  Google Scholar 

  • VanLandingham MR, Villarrubia JS, Guthrie WF, Meyers GF (2001) Nanoindentation of polymers: an overview. Macromol Symp 167:15–43

    Article  CAS  Google Scholar 

  • VanLandingham MR, Chang NK, Drzal PL, White CC, Chang SH (2005) Viscoelastic characterization of polymers using instrumented indentation. I. Quasi-static testing. J Polym Sci B Polym Phys 43(14):1794–1811

    Article  CAS  Google Scholar 

  • White CC, Vanlandingham MR, Drzal PL, Chang NK, Chang SH (2005) Viscoelastic characterization of polymers using instrumented indentation. II. Dynamic testing. J Polym Sci B Polym Phys 43(14):1812–1824

    Article  CAS  Google Scholar 

  • Wimmer R, Lucas BN, Tsui TY, Oliver WC (1997) Longitudinal hardness and young’s modulus of spruce tracheid secondary walls using nanoindentation technique. Wood Sci Technol 31(2):131–141

    CAS  Google Scholar 

  • Zhang YF, Bai SL, Yang DY, Zhang Z, Kao-Walter S (2008) Study on the viscoelastic properties of the epoxy surface by means of nanodynamic mechanical analysis. J Polym Sci B Polym Phys 46(3):281–288

    Article  CAS  Google Scholar 

  • Zhang YF, Bai SL, Li XK, Zhang Z (2009) Viscoelastic properties of nanosilica-filled epoxy composites investigated by dynamic nanoindentation. J Polym Sci B Polym Phys 47(10):1030–1038

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu Lin Bai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, T., Bai, S.L., Zhang, Y.F. et al. Viscoelastic properties of wood materials characterized by nanoindentation experiments. Wood Sci Technol 46, 1003–1016 (2012). https://doi.org/10.1007/s00226-011-0458-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-011-0458-3

Keywords

Navigation