Skip to main content

Advertisement

Log in

What drives detrital decomposition in neotropical tank bromeliads?

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Decomposition experiments that control leaf litter species across environments help to disentangle the roles of litter traits and consumer diversity, but once we account for leaf litter effects, they tell us little about the variance in decomposition explained by shifts in environmental conditions versus food-web structure. We evaluated how habitat, food-web structure, leaf litter species, and the interactions between these factors affect litter mass loss in a neotropical ecosystem. We used water-filled bromeliads to conduct a reciprocal transplant experiment of two litter species between an open and a forested habitat in French Guiana, and coarse- and fine-mesh enclosures embedded within bromeliads to exclude invertebrates or allow them to colonize leaf litter disks. Soft Melastomataceae leaves decomposed faster in their home habitat, whereas tough Eperua leaves decomposed equally in both habitats. Bacterial densities did not differ significantly between the two habitats. Significant shifts in the identity and biomass of invertebrate detritivores across habitats did not generate differences in leaf litter decomposition, which was essentially microbial. Despite the obvious effects of habitats on food-web structure, ecosystem processes are not necessarily affected. Our results pose the question of when does environmental determinism matter for ecosystem functions, and when does it not.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Atwood, T. B., E. Hammill, H. S. Greig, P. Kratina, J. B. Shurin, D. S. Srivastava & J. S. Richardson, 2013. Predator-induced reduction of freshwater carbon dioxide emissions. Nature Geoscience 6: 191–194.

    Article  CAS  Google Scholar 

  • Atwood, T. B., E. Hammill, D. S. Srivastava & J. S. Richardson, 2014. Competitive displacement alters top-down effects on carbon dioxide concentrations in a freshwater ecosystem. Oecologia 175: 353–361.

    Article  PubMed  Google Scholar 

  • Ayres, E., H. Steltzer, B. L. Simmons, R. T. Simpson, J. M. Steinweg, M. D. Wallenstein, N. Nate Mellor, W. J. Parton, J. C. Moore & D. H. Wall, 2009. Home-field advantage accelerates leaf litter decomposition in forests. Soil Biology and Biochemistry 41: 606–610.

    Article  CAS  Google Scholar 

  • Benzing, D. H., 1990. Vascular Epiphytes: General Biology and Related Biota. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Boyero, L., R. G. Pearson, D. Dudgeon, M. A. S. Graça, M. O. Gessner, R. J. Albariño, V. Ferreira, C. M. Yule, A. J. Boulton, M. Arunachalam, M. Callisto, E. Chauvet, A. Ramírez, J. Chará, M. S. Moretti, J. F. J. Gonçalves, J. E. Helson, A. M. Chará-Serna, A. C. Encalada, J. N. Davies, S. Lamothe, A. Cornejo, A. O. Y. Li, L. M. Buria, V. D. Villanueva, M. C. Zúñiga & C. M. Pringle, 2011. Global distribution of a key trophic guild contrasts with common latitudinal diversity patterns. Ecology 92: 1839–1848.

    Article  PubMed  Google Scholar 

  • Brouard, O., A.-H. Le Jeune, C. Leroy, R. Céréghino, O. Roux, L. Pélozuelo, A. Dejean, B. Corbara & J.-F. Carrias, 2011. Are algae relevant to the detritus-based food web in tank-bromeliads? PLoS ONE 6(5): e20129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brouard, O., R. Céréghino, B. Corbara, C. Leroy, L. Pélozuelo, A. Dejean & J.-F. Carrias, 2012. Understory environments influence functional diversity in tank-bromeliad ecosystems. Freshwater Biology 57: 815–823.

    Article  Google Scholar 

  • Céréghino, R., C. Leroy, J.-F. Carrias, L. Pélozuelo, C. Segura, C. Bosc, A. Dejean & B. Corbara, 2011. Ant-plant mutualisms promote functional diversity in phytotelm communities. Functional Ecology 25: 954–963.

    Article  Google Scholar 

  • Coq, S., J. M. Souquet, E. Meudec, V. Cheynier & S. Hättenschwiler, 2010. Interspecific variation in leaf litter tannins drives decomposition in a tropical rain forest of French Guiana. Ecology 91: 2080–2091.

    Article  PubMed  Google Scholar 

  • de Toledo Castanho, C. & A. A. de Oliveira, 2008. Relative effect of litter quality, forest type and their interaction on leaf decomposition in south-east Brazilian forests. Journal of Tropical Ecology 24: 149–156.

    Article  Google Scholar 

  • Dedieu, N., S. Clavier, R. Vigouroux, P. Cerdan & R. Céréghino, 2016. A multimetric macroinvertebrate index for the implementation of the European water framework directive in French Guiana, East-Amazonia. River Research and Applications 32: 501–515.

    Article  Google Scholar 

  • Dézerald, O., C. Leroy, B. Corbara, J.-F. Carrias, L. Pelozuelo, A. Dejean & R. Céréghino, 2013. Food-web structure in relation to environmental gradients and predator-prey ratios in tank-bromeliad ecosystems. Plos ONE 8: e71735.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dézerald, O., S. Talaga, C. Leroy, J.-F. Carrias, B. Corbara, A. Dejean & R. Céréghino, 2014. Environmental determinants of macroinvertebrate diversity in small water bodies: insights from tank-bromeliads. Hydrobiologia 723: 77–86.

    Article  Google Scholar 

  • Dézerald, O., C. Leroy, B. Corbara, A. Dejean, S. Talaga & R. Céréghino, 2017. Environmental drivers of invertebrate population dynamics in neotropical tank bromeliads. Freshwatrer Biology 62: 229–242.

    Article  Google Scholar 

  • Farjalla, V. F., D. S. Srivastava, N. A. C. Marino, F. D. Azevedo, V. Dib, P. M. Lopes, A. S. Rosado, R. L. Bozelli & F. A. Esteves, 2012. Ecological determinism increases with organism size. Ecology 93: 1752–1759.

    Article  PubMed  Google Scholar 

  • Farjalla, V. F., A. L. González, R. Céréghino, O. Dézerald, N. A. C. Marino, G. C. Piccoli, B. A. Richardson, M. J. Richardson, G. Q. Romero & D. S. Srivastava, 2016. Terrestrial support of aquatic food webs depends on light inputs: a geographically-replicated test using tank bromeliads. Ecology 97: 2147–2156.

    Article  PubMed  Google Scholar 

  • Ferreira, V. & E. Chauvet, 2011. Future increase in temperature more than decrease in litter quality can affect microbial litter decomposition in streams. Oecologia 67: 279–291.

    Article  Google Scholar 

  • Geraldes, P., C. Pascoal & F. Cassio, 2012. Effects of increased temperature and aquatic fungal diversity on litter decomposition. Fungal Ecology 5: 734–740.

    Article  Google Scholar 

  • Gessner, M. O., E. Chauvet & M. Dobson, 1999. A perspective on leaf litter breakdown in streams. Oikos 85: 377–384.

    Article  Google Scholar 

  • Gessner, M. O., C. M. Swan, C. K. Dang, B. G. McKie, R. D. Bardgett, D. H. Wall & S. Hättenschwiler, 2010. Diversity meets decomposition. Trends in ecology & evolution 25: 372–380.

    Article  Google Scholar 

  • Gholz, H. L., D. A. Wedin, S. M. Smitherman, M. E. Harmon & W. J. Parton, 2000. Long-term dynamics of pine and hardwood litter in contrasting environments: toward a global model of decomposition. Global Change Biology 6: 751–765.

    Article  Google Scholar 

  • Givnish, T. J., M. H. Barfuss, B. V. Ee, R. Riina, K. Schulte, R. Horres, P. A. Gonsiska, R. S. Jabaily, D. M. Crayn, J. A. Smith, K. Winter, G. K. Brown, T. M. Evans, B. K. Holst, H. Luther, W. Till, G. Zizka, P. E. Berry & K. J. Sytsma, 2011. Phylogeny, adaptive radiation, and historical biogeography in Bromeliaceae: insights from an eight-locus plastid phylogeny. American Journal of Botany 98: 872–895.

    Article  PubMed  Google Scholar 

  • Gonçalves, J. F., M. A. S. Graça & M. Callisto, 2007. Litter decomposition in a Cerrado savannah stream is retarded by leaf toughness, low dissolved nutrients and a low density of shredders. Freshwater Biology 52: 1440–1451.

    Article  Google Scholar 

  • Hättenschwiler, S. & H. B. Jorgensen, 2010. Carbon quality rather than stoichiometry controls litter decomposition in a tropical rain forest. Journal of Ecology 98: 754–763.

    Article  Google Scholar 

  • Hättenschwiler, S., A. V. Tiunov & S. Scheu, 2005. Biodiversity and litter decomposition in terrestrial ecosystems. Annual Review of Ecology, Evolution, and Systematics 36: 191–218.

    Article  Google Scholar 

  • Jabiol, J., B. Corbara, A. Dejean & R. Céréghino, 2009. Structure of aquatic insect communities in tank-bromeliads in a East-Amazonian rainforest in French Guiana. Forest Ecology and Management 257: 351–360.

    Article  Google Scholar 

  • Jabiol, J., A. Bruder, M. O. Gessner, M. Makkonen, B. G. McKie, E. T. H. M. Peeters, V. C. A. Vos & E. Chauvet, 2013. Diversity patterns of leaf-associated aquatic hyphomycetes along a broad latitudinal gradient. Fungal Ecology 6: 439–448.

    Article  Google Scholar 

  • Jocqué, M., A. Kernahan, A. Nobes, C. Willians & R. Field, 2010. How effective are non-destructive sampling methods to assess aquatic invertebrate diversity in bromeliads? Hydrobiologia 649: 293–300.

    Article  Google Scholar 

  • Karaus, U., L. Adler & K. Tockner, 2005. Concave islands: habitat heterogeneity of parafluvial ponds in a grave-bed river. Wetlands 25: 26–37.

    Article  Google Scholar 

  • Lecerf, A., G. Marie, J. S. Kominoski, C. J. LeRoy, C. Bernadette & C. M. Swan, 2011. Incubation time, functional litter diversity, and habitat characteristics predict litter-mixing effects on decomposition. Ecology 92: 160–169.

    Article  PubMed  Google Scholar 

  • LeCraw, R. M., G. Q. Romero & D. S. Srivastava, 2017. Geographic shifts in the effects of habitat size on trophic structure and decomposition. Ecography. doi:10.1111/ecog.02796.

    Google Scholar 

  • Leroy, C., B. Corbara, A. Dejean & R. Céréghino, 2009. Ants mediate foliar structure and nitrogen acquisition in a tank-bromeliad. New Phytologist 183: 1124–1133.

    Article  PubMed  Google Scholar 

  • Merritt, R. W. & K. W. Cummins, 1996. An introduction to the aquatic insects of North America. Kendall/Hunt Publishing Company, Dubuque.

    Google Scholar 

  • Moore, J. C., E. L. Berlow, D. C. Coleman, P. C. de Ruiter, Q. Dong, A. Hastings, N. C. Johnson, K. S. McCann, K. Melville, P. J. Morin, K. Nadelhoffer, A. D. Rosemond, D. M. Post, J. L. Sabo, K. M. Scow, M. J. Vanni & D. H. Wall, 2004. Detritus, trophic dynamics and biodiversity. Ecology Letters 7: 584–600.

    Article  Google Scholar 

  • Ngai, J. T. & D. S. Srivastava, 2006. Predators accelerate nutrient cycling in a bromeliad ecosystem. Science 314: 963.

    Article  CAS  PubMed  Google Scholar 

  • O’Connor, N. E. & I. Donohue, 2013. Environmental context determines multi-trophic effects of consumer species loss. Global Change Biology 19: 431–440.

    Article  PubMed  Google Scholar 

  • Pan, X., Y. B. Song, G. F. Liu, Y. K. Hu, X. H. Ye, W. K. Cornwell, A. Prinzing, M. Dong & J. H. Cornelissen, 2015. Functional traits drive the contribution of solar radiation to leaf litter decomposition among multiple arid-zone species. Scientific reports 5: 13217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • R Development Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.Rproject.org/ (Accessed 28 April 2015).

  • Richardson, B., C. Rogers & M. Richardson, 2000. Nutrients, diversity, and community structure of two phytotelm systems in a lower montane forest, Puerto Rico. Ecological Entomology 25: 348–356.

    Article  Google Scholar 

  • Richardson, B. A., M. J. Richardson, G. González, A. B. Shiels & D. S. Srivastava, 2010. A canopy trimming experiment in Puerto Rico: the response of litter invertebrate communities to canopy loss and debris deposition in a tropical forest subject to hurricanes. Ecosystems 13: 286–301.

    Article  CAS  Google Scholar 

  • Rosemond, A. D., C. M. Pringle, A. Ramírez & M. J. Paul, 2001. A test of top-down and bottom-up control in a detritus-based food web. Ecology 82: 2279–2293.

    Article  Google Scholar 

  • Srivastava, D., 2006. Habitat structure, trophic structure and ecosystem function: interactive effects in a bromeliad–insect community. Oecologia 149: 493–504.

    Article  PubMed  Google Scholar 

  • Srivastava, D., J. Kolasa, J. Bengtsson, A. Gonzalez, S. Lawler, T. Miller, P. Munguia, T. Romanuk, D. Schneider & M. Trzcinski, 2004. Are natural microcosms useful model systems for ecology? Trends in Ecology and Evolution 19: 379–384.

    Article  PubMed  Google Scholar 

  • Strickland, M. S., E. Osbern, C. Lauber, N. Fierer & M. A. Bradford, 2009. Litter quality in the eye of the beholder: initial decomposition rates as a function of inoculum characteristics. Functional Ecology 23: 627–636.

    Article  Google Scholar 

  • Talaga, S., O. Dézerald, A. Carteron, F. Petitclerc, C. Leroy, R. Céréghino & A. Dejean, 2015. Tank bromeliads as natural microcosms: a facultative association with ants influences the aquatic invertebrate community structure. Comptes Rendus Biologies 338: 696–700.

    Article  PubMed  Google Scholar 

  • Taylor, B. R. & E. Chauvet, 2014. Relative influence of shredders and fungi on leaf litter decomposition along a river altitudinal gradient. Hydrobiologia 721: 239–250.

    Article  CAS  Google Scholar 

  • Touron-Poncet, H., C. Bernadet, A. Compin, N. Bargier & R. Céréghino, 2014. Implementing the water framework directive in overseas Europe: a multimetric macroinvertebrate index for river bioassessment in Caribbean islands. Limnologica 47: 34–43.

    Article  Google Scholar 

  • Trzcinski, M. K., D. S. Srivastava, B. Corbara, O. Dézerald, C. Leroy, J.-F. Carrias, A. Dejean & R. Céréghino, 2016. The effects of food web structure on ecosystem function exceeds those of precipitation. Journal of Animal Ecology 85: 1147–1160.

    Article  PubMed  Google Scholar 

  • Veen, G. F., G. T. Freschet, A. Ordonez & D. A. Wardle, 2015. Litter quality and environmental controls of home-field advantage effects on litter decomposition. Oikos 124: 187–195.

    Article  Google Scholar 

  • Wallace, J. B., S. L. Eggert, J. L. Meyer & J. R. Webster, 1997. Multiple trophic levels for a forested stream linked to terrestrial litter inputs. Science 277: 102–104.

    Article  CAS  Google Scholar 

  • Wilkinson, D. M., 1998. Fragments of an entangled bank: do ecologists study most of ecology? Oikos 82: 393–394.

    Article  Google Scholar 

  • Wobbrock, J. O., L. Findlater, D. Gergle & J. J. Higgins, 2011. The Aligned Rank Transform for nonparametric factorial analyses using only ANOVA procedures. In: Proceedings of the SIGCHI conference on human factors in computing systems. ACM Press, Vancouver, British Columbia, New York: 143–146.

Download references

Acknowledgements

We thank Andrea Yockey Dejean for proofreading the English text, and Arthur Compin for preparing Fig. 1. We are grateful to the members of Hydréco (Laboratoire Environnement Petit Saut) for field and technical support. Two anonymous reviewers made valuable comments on an earlier version of the manuscript. Financial support was provided by the Agence Nationale de la Recherche throught the Rainwebs project (grant ANR-12-BSV7-0022-01) and an “Investissement d’Avenir” grant (CEBA: ANR-10-LABX-25-01). OD’s financial support was provided by a PhD fellowship from the Centre National de la Recherche Scientifique and the Fond Social Européen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Céline Leroy.

Additional information

Handling editor: Verónica Jacinta Lopes Ferreira

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leroy, C., Corbara, B., Dézerald, O. et al. What drives detrital decomposition in neotropical tank bromeliads?. Hydrobiologia 802, 85–95 (2017). https://doi.org/10.1007/s10750-017-3242-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-017-3242-z

Keywords

Navigation