Skip to main content
Log in

Diversity of the Volatile Organic Compounds Emitted by 55 Species of Tropical Trees: a Survey in French Guiana

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Volatile organic compounds (VOCs) are produced by a broad range of organisms, from bacteria to mammals, and they represent a vast chemical diversity. In plants, one of the preeminent roles of VOCs is their repellent or cytotoxic activity, which helps the plant deter its predators. Most studies on VOCs emitted by vegetative parts have been conducted in model plant species, and little is known about patterns of VOC emissions in diverse plant communities. We conducted a survey of the VOCs released immediately after mechanical damage of the bark and the leaves of 195 individual trees belonging to 55 tropical tree species in a lowland rainforest of French Guiana. We discovered a remarkably high chemical diversity, with 264 distinct VOCs and a mean of 37 compounds per species. Two monoterpenes (α-pinene and limonene) and two sesquiterpenes (β-caryophyllene and α-copaene), which are known to have cytotoxic and deterrent effects, were the most frequent compounds in the sampled species. As has been established for floral scents, the blend of VOCs is largely species-specific and could be used to discriminate among 43 of the 55 sampled species. The species with the most diverse blends were found in the Sapindales, Laurales, and Magnoliales, indicating that VOC diversity is not uniformly distributed among tropical species. Interspecific variation in chemical diversity was caused mostly by variation in sesquiterpenes. This study emphasizes three aspects of VOC emission by tropical tree species: the species-specificity of the mixtures, the importance of sesquiterpenes, and the wide-ranging complexity of the mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • AGRAWAL, A. A. and FISHBEIN, M. 2006. Plant defense syndromes. Ecology 87:132–149.

    Article  Google Scholar 

  • AKHTAR, Y. and ISMAN, M. B. 2003. Binary mixtures of feeding deterrents mitigate the decrease in feeding deterrent response to antifeedants following prolonged exposure in the cabbage looper, Trichoplusia ni (Lepidoptera: Noctuidae). Chemoecology 13:177–182.

    Article  CAS  Google Scholar 

  • BAKKALI, F., AVERBECK, S., AVERBECK, D., and IDAOMAR, M. 2008. Biological effects of essential oils: a review. Food Chem. Toxicol. 46:446–475.

    Article  PubMed  CAS  Google Scholar 

  • BANCHIO, E., ZYGADLO, J., and VALLADARES, G. R. 2005. Effects of mechanical wounding on essential oil composition and emission of volatiles from Minthostachys mollis. J. Chem. Ecol. 31:719–727.

    Article  PubMed  CAS  Google Scholar 

  • BARALOTO, C., PAINE, C. E. T., PATINÕ, S., BONAL, D., HÉRAULT, B., and CHAVE, J. 2009. Functional trait variation and sampling strategies in species-rich plant communities. Funct. Ecol. in press.

  • BERENBAUM, M. and NEAL, J. J. 1985. Synergism between myristicin and xanthotoxin, a naturally cooccurring plant toxicant. J. Chem. Ecol. 11:1349–1358.

    Article  CAS  Google Scholar 

  • BORGES, R. M., BESSIÈRE, J.-M., and HOSSAERT-MCKEY, M. 2008. The chemical ecology of seed dispersal in monoecious and dioecious figs. Funct. Ecol. 22:484–493.

    Article  Google Scholar 

  • BOUVIER-BROWN, N. C., HOLZINGER, R., PALITZSCH, K., and GOLDSTEIN, A. H. 2007. Quantifying sesquiterpene and oxygenated terpene emissions from live vegetation using solid-phase microextraction fibers. J. Chrom. A 1161:113–120.

    Article  CAS  Google Scholar 

  • COLEY, P. D. and AIDE, M. T. 1991. Comparison of herbivory and plant defenses in temperate and tropical broad-leaved forests, pp. 25–49, in P. W. Price, T. M. Lewinsohn, G. W. Fernandes, and W. W. Benson (eds.). Plant–Animal Interactions: Evolutionary Ecology in Tropical and Temperate Regions. Wiley, New York.

    Google Scholar 

  • DE MORAES, C. M., MESCHER, M. C., and TUMLINSON, J. H. 2001. Caterpillar-induced nocturnal plant volatiles repel conspecific females. Nature 410:577–580.

    Article  PubMed  CAS  Google Scholar 

  • DUDAREVA, N., NEGRE, F., NAGEGOWDA, D. A., and ORLOVA, I. 2006. Plant volatiles: Recent advances and future perspectives. Crit. Rev. Plant Sci. 25: 417–440.

    Article  CAS  Google Scholar 

  • FINE, P. V. A., MILLER, Z. J., MESONES, I., IRAZUZTA, S., APPEL, H. M., STEVENS, M. H. H., SÄÄKSJÄRVI, I., SCHULTZ, J. C., and COLEY, P. D. 2006. The growth-defense trade-off and habitat specialization by plants in amazonian forests. Ecology 87:150–162.

    Article  Google Scholar 

  • FIRN, R. D. and JONES, C. G. 2003. Natural products, a simple model to explain chemical diversity. Nat. Prod. Rep. 20:382–391.

    Article  PubMed  CAS  Google Scholar 

  • FRAENKEL, G. S. 1959. The raison d’etre of secondary plant substances. Science 129:1466–1470.

    Article  PubMed  CAS  Google Scholar 

  • GERSHENZON, J. and DUDAREVA, N. 2007. The function of terpene natural products in the natural world. Nat. Chem. Biol. 3:408–414.

    Article  PubMed  CAS  Google Scholar 

  • GOLS, R., WITJES, L. M. A., VAN LOON, J. J. A., POSTHUMUS, M. A., DICKE, M., and HARVEY, J. A. 2008. The effect of direct and indirect defenses in two wild brassicaceous plant species on a specialist herbivore and its gregarious endoparasitoid. Entomol. Exp. Appl. 128:99–108.

    Article  CAS  Google Scholar 

  • GREENBERG, J. P., GUENTHER, A. B., PETRON, G., WIEDINMYER, C., VEGA, O., GATTI, L. V., TOTA, J., and FISCH, G. 2004. Biogenic VOC emissions from forested Amazonian landscapes. Global Change Biol. 10:651–662.

    Article  Google Scholar 

  • GUENTHER, A. 2002. The contribution of reactive carbon emissions from vegetation to the carbon balance of terrestrial ecosystems. Chemosphere 49:837–844.

    Article  PubMed  CAS  Google Scholar 

  • GUO, F. Q., HUANG, L. F., ZHOU, S. Y., ZHANG, T. M., and LIANG, Y. Z. 2006. Comparison of the volatile compounds of Atractylodes medicinal plants by headspace solid-phase microextraction-gas chromatography-mass spectrometry. Anal. Chim. Acta 570: 73–78.

    Article  CAS  Google Scholar 

  • HARTMANN, T. 2007. From waste products to ecochemicals: Fifty years research of plant secondary metabolism. Phytochemistry 68:2831–2846.

    Article  PubMed  CAS  Google Scholar 

  • HEIL, M. 2004. Direct defense or ecological costs: responses of herbivorous beetles to volatiles released by wild lima bean (Phaseolus lunatus). J. Chem. Ecol. 30:1289–1295.

    Article  PubMed  CAS  Google Scholar 

  • HEIL, M. 2008. Indirect defence via tritrophic interactions. New Phytol. 178: 41–61.

    Article  PubMed  CAS  Google Scholar 

  • JANZEN, D. H. 1970. Herbivores and the number of tree species in tropical forests. Am. Nat. 104:501–528.

    Article  Google Scholar 

  • JONES, C. G. and FIRN, R. D. 1991. On the evolution of plant secondary chemical diversity. Phil. Trans. R. Soc. Lond. B. 333:273–280.

    Article  Google Scholar 

  • KEELING, C. I. and BOHLMANN, J. 2006. Genes, enzymes and chemicals of terpenoid diversity in the constitutive and induced defence of conifers against insects and pathogens. New Phytol. 170:657–675.

    Article  PubMed  CAS  Google Scholar 

  • KESSELMEIER, J. and STAUDT, M. 1999. Biogenic volatile organic compounds (VOC): An overview on emission, physiology and ecology. J. Atm. Chem. 33: 23–88.

    Article  CAS  Google Scholar 

  • KNUDSEN, J. T., ERIKSSON, R., GERSHENZON, J., and STAHL, B. 2006. Diversity and distribution of floral scent. Bot. Rev. 72, 1–120.

    Article  Google Scholar 

  • KÖLLNER, T. G., HELDB, M., LENK, C., HILTPOLD, I., TURLINGS, T. C. J., GERSHENZON, J., and DEGENHARDT, J. 2008. A maize (E)-b-caryophyllene synthase implicated in indirect defense responses against herbivores is not expressed in most American maize varieties. Plant Cell 20: 482–494.

    Article  PubMed  CAS  Google Scholar 

  • KOVATS, E. 1958. Gas-chromatographische charakterisierung organischer verbindungen. teil 1: Retentionsindices aliphatischer halogenide, alkohole, aldehyde und ketone. Helv. Chim. Acta 41:1915–1932.

    Article  CAS  Google Scholar 

  • LEWINSOHN, T. M. and ROSLIN, T. 2008. Four ways towards tropical herbivore megadiversity. Ecology Lett. 11: 398–416.

    Article  Google Scholar 

  • LORD, H. and PAWLISZYN, J. 2000. Evolution of solid-phase microextraction technology. J. Chrom. A 885:153–193.

    Article  CAS  Google Scholar 

  • MATTIACCI, L., DICKE, M., and POSTHUMUS, M. A. 1995. B-Glucosidase: An elicitor of herbivore induced plant odor that attracts host-searching parasitic wasps. Proc. Natl. Acad. Sci. U.S.A. 92:2036–2040.

    Article  PubMed  CAS  Google Scholar 

  • MAYER, V., SCHABER, D., and HADACEK, F. 2008. Volatiles of myrmecophytic Piper plants signal stem tissue damage to inhabiting Pheidole ant-partners. J. Ecol. 96:962–970.

    Article  CAS  Google Scholar 

  • MCKEY, D. 1979. The distribution of secondary compounds within plants, pp. 55–133, in G. A. Rosenthal and D. H. Janzen (eds.). Herbivores, Their Interactions with Secondary Plant Constituents. Academic, New York.

    Google Scholar 

  • MIRESMAILLI, S., BRADBURY, R., and ISMAN, M. B. 2006. Comparative toxicity of Rosmarinus officinalis L. essential oil and blends of its major constituents against Tetranychus urticae Koch (Acari: Tetranychidae) on two different host plants. Pest. Manag. Sci. 62:366–371.

    Article  PubMed  CAS  Google Scholar 

  • MITHÖFER, A., WANNER, G., and BOLAND, W. 2005. Effects of feeding Spodoptera littoralis on lima bean leaves. II. Continuous mechanical wounding resembling insect feeding is sufficient to elicit herbivory-related volatile emission. Plant Physiol. 137: 1160–1168.

    Article  PubMed  CAS  Google Scholar 

  • MUMM, R. and HILKER, M. 2006. Direct and indirect chemical defence of pine against folivorous insects. Trends Plant Sci. 11:351–358.

    Article  PubMed  CAS  Google Scholar 

  • NOVOTNY, V., DROZD, P., MILLER, S. E., KULFAN, M., JANDA, M., BASSET, Y., and WEIBLEN, G. D. 2006. Why are there so many species of herbivorous insects in tropical rainforests? Science 313:1115–1118.

    Article  PubMed  CAS  Google Scholar 

  • OZEKI, A., HITOTSUYANAGI, Y., HASHIMOTO, E., ITOKAWA, H., TAKEYA, K., and DE MELLO ALVES, S. 1998. Cytotoxic quassinoids from Simaba cedron. J. Nat. Prod. 61:776–780.

    Article  PubMed  CAS  Google Scholar 

  • PICHERSKY, E. and GERSHENZON, J. 2002. The formation and function of plant volatiles: perfumes for pollinator attraction and defense. Curr. Opin. Plant Biol. 5, 237–243.

    Article  PubMed  CAS  Google Scholar 

  • RAGUSO, R. A. 2008. Wake Up and Smell the Roses: The ecology and evolution of floral scent. Annu. Rev. Ecol. Evol. Syst. 39:549–69.

    Article  Google Scholar 

  • ROUSSEEUW, P. J. 1987. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20:53–65.

    Article  Google Scholar 

  • SUZUKI, R. and SHIMODAIRA, H. 2006. Pvclust: an R package for assessing the uncertainty in hierarchical clustering. Bioinformatics 22:1540–1542.

    Article  PubMed  CAS  Google Scholar 

  • THOLL, D., BOLAND, W., HANSEL, A., LORETO, F., RÖSE, U. S. R., and SCHNITZLER, J. P. 2006. Practical approaches to plant volatile analysis. Plant J. 45: 540–560.

    Article  PubMed  CAS  Google Scholar 

  • TURLINGS, T. C. J. and WÄCKERS, F. 2004. Recruitment of predators and parasitoids by herbivore-injured plants, pp 21–75, in R. T. Carde and J. G. Millar (eds.). Advances in Insect Chemical Ecology. Cambridge University.

  • VICKERS, C. E., GERSHENZON, J., LERDAU, M. T., AND LORETO, F. 2009. A unified mechanism of action for volatile isoprenoids in plant abiotic stress. Nat. Chem. Biol. 5:283–291.

    Article  PubMed  CAS  Google Scholar 

  • WAJS, A., PRANOVICH, A., REUNANEN, M., WILLFÖR, S., and HOLMBOM, B. 2006. Characterisation of volatile organic compounds in stemwood using solid-phase microextraction. Phytochem. Anal. 17: 91–101.

    Article  PubMed  CAS  Google Scholar 

  • WARD, J. H. 1963. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 58: 236–244.

    Article  Google Scholar 

  • WINK, M. 2003. Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry 64:3–19.

    Article  PubMed  CAS  Google Scholar 

  • WINK, M. 2006. Importance of plant secondary metabolites for protection against insect and microbial infections, pp 251–268, in M. Rai and M. Carpinella (eds.). Naturally Occurring Bioactive Compounds. Elsevier, Amsterdam.

    Chapter  Google Scholar 

Download references

Acknowledgements

We thank all participants of the BRIDGE project, Antoine Stevens and the Institut Pasteur of French Guiana in Cayenne for providing laboratory facilities, Pascal Petronelli for help in the field, Julien Engel for help in the validation of the protocol, Bruno Buatois for providing the alkane blend, and Martine Hossaert-McKey, Kyle G. Dexter, A. E. Hagerman and two anonymous reviewers for useful comments at several stages of the writing of this manuscript. This work is a contribution of the BRIDGE project, funded by the Agence Nationale pour la Recherche (ANR-Biodiversité program).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elodie A. Courtois.

Appendices

Appendix 1

SPME fiber exposure time for leaves and bark of each species

species code

Bark extraction (min)

Leaf extraction (min)

D. surinamensis

15

15

O. asbeckii

15

15

U. perrottetii

15

15

U. rufescens

15

15

X. nitida

15

15

I. hostmannii

30

30

I. sagotiana

30

30

V. michelii

30

30

A. panurensis

5

15

O. argyrophylla

5

15

O. percurrens

5

15

S. rubra

5

15

M. decorticans

30

15

R. albiflora

30

30

C. glabrum

30

30

H. glandulosa

30

30

L. membranacea

60

30

P. campestris

60

30

R. madruno

30

30

T. spB1

15

15

C. guianensis

30

30

T. melinonii

15

30

V. americana

5

5

B. prouacensis

30

30

P. villosa

30

30

B. guianense

30

30

A. spruceanum

15

30

T. guianense

15

15

T. puberulum

15

15

D. nitens

5

15

P. decandrum

5

15

P. opacum

5

15

P. sagotianum

5

15

T. altissima

5

15

T. panamensis

5

15

C. procera

30

30

C. scrobiculata

15

15

S. cedron

60

15

P. dolichocalyx

30

30

S. pruriens

30

30

T. subincanum

30

30

A. glabra

30

30

E. congestiflora

30

15

E. coriacea

30

15

L. persistens

30

15

L. poiteaui

30

30

C. argenteum

30

30

M. egensis

30

30

M. guyanensis

30

30

P. gonggrijpii

30

30

P. guianensis

30

15

A. cruentum

30

30

A. marcgravianum

30

30

C. turbinata

30

30

P. latifolia

30

30

Appendix 2

Compounds tentatively identified. For each compound, the Kovats RI and the number of species that emits the compound is indicated. The compounds authenticated with standards are indicated by *.

classe

compound

RI

# species

N_compound

2-isopropyl-3-methoxypyrazine

1091

1

shikimic pathway

unknown S 1

1206

15

methyl salicylate

1206

5

1,4-dimethoxybenzene

1249

1

lipidic pathway (LP)

hexanal

813

52

n-hexanol

872

45

(E)-2-hexenal

863

41

penten-3-ol

741

38

2-ethyl furan

749

32

(Z)-3-hexenol

864

27

unknown LP 1

733

20

isopentyl alcohol

768

16

unknown LP 2

735

15

octen-3-ol

984

15

3-octanone

989

15

unknown LP 3

854

14

2-pentanone

743

12

penten-1-ol

791

9

3-pentanone

749

7

heptanal

905

7

hexyl hexanoate

1386

7

(E)-3-hexenol

857

6

1-pentanol

769

5

hexenyl acetate

1014

5

3-methyl-3-buten-1-ol

757

4

3-octanol

1000

4

hexenyl-3-methylbutanoate

1231

4

(Z)-2-hexenol

872

3

octanone

989

3

hexenyl butanoate

1186

3

octene

800

2

(E)-2-octen-1-al

1066

2

hexyl butanoate

1192

2

unknown LP 4

805

1

unknown LP 5

909

1

unknown LP 6

970

1

hexenyl isobutanoate

1142

1

hexenyl isovalerate

1236

1

irregular terpene

6-methyl-5-hepten-2-one

989

1

monoterpene

α-pinene *

940

55

limonene *

1034

53

p-cymene

1030

45

β-pinene

985

42

3-carene

1014

29

β-myrcene *

992

29

α-phellandrene

1011

28

camphene

958

26

linalool *

1103

20

p-xylene

881

19

α-thujene

932

18

β-phellandrene

1036

14

β-terpinolene

1089

14

1,8-cineole

1038

12

α-terpinene

1022

11

γ-terpinene

1062

11

β-ocimene

1049

10

sabinene

978

10

o-xylene

905

7

iso-methoxythymol

1241

6

o-cymene

1025

6

Perilene

1114

6

tricyclene

930

6

delta-2-carene

1002

5

α-terpinolene

1083

4

cis-sabinene-hydrate

1075

4

terpinene-4-ol

1188

4

allo-ocimene

1119

3

linalool-oxide-trans

1075

3

unknown monoterpene 1

1173

3

mentha-1-7(8)-diene

1010

3

p-cymenene

1096

3

verbenene

986

3

3p-menthene

1000

2

camphor

1156

2

carvacrol-methyl-ether

1232

2

(E)-β-ocimene

1047

2

mentha-2,8-diene

1001

2

thuja-2,4(10)-diene

961

2

thymol-methyl-ether

1227

2

(4E,6Z)-allo-ocimene

1131

1

α-terpineol

1202

1

campholenal

1133

1

cymen-8-ol

1194

1

linalool-oxide-cis

1180

1

linalool-oxide-dihydroxy

1112

1

unknown monoterpene 2

1047

1

mentha-2,8-dienol

1123

1

myrtenal

1204

1

pinocarvone

1170

1

rose-furan-oxide

1197

1

trans-sabinene-hydrate

1108

1

sylvestrene

1021

1

trans-pinocarveol

1149

1

trans-verbenol

1152

1

(Z)-β-ocimene

1035

1

sesquiterpene

β-caryophyllene *

1427

52

α-copaene

1381

51

α-humulene

1462

45

δ-cadinene

1521

44

germacrene D

1487

41

cyperene

1412

40

bicyclogermacrene

1502

36

allo-aromadendrene

1467

35

sesquithujene

1393

35

α-ylangene

1375

34

di-exo-T-cadinol

1479

34

γ-cadinene

1518

33

calarene

1436

32

unknown sesquiterpene 1

1393

32

aromadendrene

1445

31

unknown sesquiterpene 2

1503

31

α-cubebene

1349

30

unknown sesquiterpene 3

1502

30

trans-calamenene

1526

28

δ-elemene

1338

25

β-humulene *

1433

24

bicyclo-elemene

1335

24

eremophyladiene

1541

24

α-selinene

1496

21

caryophyllene-oxide

1592

21

cis-cadina-1,4-diene

1498

21

γ-elemene

1432

21

unknown sesquiterpene 4

1350

21

unknown sesquiterpene 5

1439

21

α-cadinene

1536

20

β-bazzanene

1529

20

(Z)-α-bisabolene

1509

19

α-muurolene

1507

18

unknown sesquiterpene 6

1399

18

unknown sesquiterpene 7

1435

18

sesquithujene-7-epi

1389

18

gamma-selinene

1479

17

allo-aromadendra-4(15),10(14)-diene

1455

16

sesquiphellandrene

1514

16

african-2(6)-ene

1361

15

α-cedrene

1416

15

7-epi-α-cedrene

1404

14

α-guaiene

1439

14

unknown sesquiterpene 8

1450

14

1-epi-α-pinguisene

1370

13

β-maaliene

1417

13

(Z)-β-farnesene

1451

12

β-bisabolene

1503

12

unknown sesquiterpene 9

1483

12

viridiflorene

1496

12

anastreptene

1370

11

g-muurolene

1480

11

iso-carryophyllene

1411

11

rotundene

1469

11

unknown sesquiterpene 10

1327

11

unknown sesquiterpene 11

1434

11

β-calacorene

1547

10

β-curcumene

1512

10

 

α-curcumene

1484

9

δ-selinene

1492

9

unknown sesquiterpene 12

1500

9

unknown sesquiterpene 13

1528

9

unknown sesquiterpene 14

1547

9

unknown sesquiterpene 15

1369

9

unknown sesquiterpene 16

1405

9

unknown sesquiterpene 17

1451

9

β-cubebene

1385

7

β-selinene

1490

7

(Z,E)-α-farnesene

1488

6

β-elemene

1385

6

unknown sesquiterpene 18

1325

6

spathulenol

1585

6

trans-cadina-1,4-diene

1538

6

7-epi-α-selinene

1534

5

α-longipinene

1358

5

β-barbatene

1458

5

β-bourbonene

1390

5

β-ylangene

1424

5

cadina-3,5-diene

1454

5

calameren-9-ol

1555

5

cis-calamenene

1532

5

cuparene

1517

5

gorgonene

1446

5

hinesene

1528

5

muurolol

1603

5

oppositadiene

1393

5

presilphiperfolene

1312

5

unknown sesquiterpene 19

1507

5

unknown sesquiterpene 20

1443

5

unknown sesquiterpene 21

1425

5

α-gurjunene

1413

4

β-acoradiene

1472

4

bourboneral

1555

4

cadinene-ether

1570

4

γ-curcumene

1480

4

guaiadiene

1407

4

maali-1,3-diene

1351

4

unknown sesquiterpene 22

1530

4

unknown sesquiterpene 23

1420

4

unknown sesquiterpene 24

1449

4

selina-4,7-diene

1513

4

striatene

1461

4

trans-cubebol

1514

4

(E)-β-farnesene

1461

3

aromadendra-4,10(14)-diene

1442

3

cadina-1(10),6-diene

1461

3

epi-α-muurolol

1655

3

unknown sesquiterpene 25

1455

3

unknown sesquiterpene 26

1484

3

unknown sesquiterpene 27

1458

3

 

α-alaskene

1514

2

α-cadinol

1666

2

α-santalene

1423

2

bourbon-11-ene

1429

2

brasiladiene

1336

2

cubenol

1624

2

cyclo-bazzanene

1523

2

cyperadiene

1358

2

dendrolasine

1576

2

epi-α-cadinol

1654

2

gamma-guaiene

1511

2

isoledene

1378

2

unknown sesquiterpene 28

1457

2

unknown sesquiterpene 29

1523

2

unknown sesquiterpene 30

1437

2

unknown sesquiterpene 31

1328

2

unknown sesquiterpene 32

1389

2

unknown sesquiterpene 33

1509

2

unknown sesquiterpene 34

1533

2

unknown sesquiterpene 35

1443

2

unknown sesquiterpene 36

1444

2

selina-4,11-diene

1482

2

(3E,6Z)-α-farnesene

1481

1

5-epi-aristolochene

1476

1

african-2,6-diene

1345

1

α-cuprenene

1555

1

α-duprezzianene

1389

1

β-chamigrene

1534

1

β-vetivene

1536

1

brasila-1(6),5(10)-diene

1436

1

cadalene

1635

1

calamenol

1550

1

cymene-2,5-dimethoxy-para

1415

1

(E)-γ-bisabolene

1529

1

epistolene

1393

1

erythrodiene

1447

1

2-epi-α-funebrene

1419

1

germacrene B

1567

1

iso-bicyclogermacrene

1489

1

pacifigorgia-1(9),10-diene

1385

1

pacifigorgia-2,10-diene

1431

1

palustrol

1581

1

unknown sesquiterpene 37

1462

1

unknown sesquiterpene 38

1493

1

unknown sesquiterpene 39

1577

1

unknown sesquiterpene 40

1585

1

unknown sesquiterpene 41

1422

1

unknown sesquiterpene 42

1334

1

unknown sesquiterpene 43

1343

1

unknown sesquiterpene 44

1496

1

unknown sesquiterpene 45

1424

1

unknown sesquiterpene 46

1448

1

unknown sesquiterpene 47

1329

1

unknown sesquiterpene 48

1506

1

unknown sesquiterpene 49

1420

1

unknown sesquiterpene 50

1423

1

sesquicineole

1516

1

veltonal

1595

1

widrene

1441

1

Rights and permissions

Reprints and permissions

About this article

Cite this article

Courtois, E.A., Paine, C.E.T., Blandinieres, PA. et al. Diversity of the Volatile Organic Compounds Emitted by 55 Species of Tropical Trees: a Survey in French Guiana. J Chem Ecol 35, 1349–1362 (2009). https://doi.org/10.1007/s10886-009-9718-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-009-9718-1

Keywords

Navigation