Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

OPINION

A cross-species approach to disorders affecting brain and behaviour

Abstract

Structural and functional elements of biological systems are highly conserved across vertebrates. Many neurological and psychiatric conditions affect both humans and animals. A cross-species approach to the study of brain and behaviour can advance our understanding of human disorders via the identification of unrecognized natural models of spontaneous disorders, thus revealing novel factors that increase vulnerability or resilience, and via the assessment of potential therapies. Moreover, diagnostic and therapeutic advances in human neurology and psychiatry can often be adapted for veterinary patients. However, clinical and research collaborations between physicians and veterinarians remain limited, leaving this wealth of comparative information largely untapped. Here, we review pain, cognitive decline syndromes, epilepsy, anxiety and compulsions, autoimmune and infectious encephalitides and mismatch disorders across a range of animal species, looking for novel insights with translational potential. This comparative perspective can help generate novel hypotheses, expand and improve clinical trials and identify natural animal models of disease resistance and vulnerability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Accumulation of amyloid-β in dogs and humans.

Images courtesy of E. Head, University of Kentucky, USA.

Fig. 2: Detection of antineuronal autoantibodies present in human and animal encephalitides.

Similar content being viewed by others

References

  1. Lanciotti, R. S. et al. Origin of the West Nile virus responsible for an outbreak of encephalitis in the northeastern United States. Science 286, 2333–2337 (1999).

    CAS  PubMed  Google Scholar 

  2. International Association for the Study of Pain. Terminology. IASP. http://www.iasppain.org/Education/Content.aspx?ItemNumber=1698 (2017).

  3. Wall, P. D. & McMahon, S. B. The relationship of perceived pain to afferent nerve impulses. Trends Neurosci. 9, 254–255 (1986).

    Google Scholar 

  4. Moseley, G. L. & Vlaeyen, J. W. S. Beyond nociception: the imprecision hypothesis of chronic pain. Pain 156, 35–38 (2015).

    PubMed  Google Scholar 

  5. Loeser, J. D. & Treede, R.-D. The Kyoto protocol of IASP basic pain terminology. Pain 137, 473–477 (2008).

    PubMed  Google Scholar 

  6. Belin, P., Fillion-Bilodeau, S. & Gosselin, F. The Montreal affective voices: a validated set of nonverbal affect bursts for research on auditory affective processing. Behav. Res. Methods 40, 531–539 (2008).

    PubMed  Google Scholar 

  7. Briefer, E. F. Vocal expression of emotions in mammals: mechanisms of production and evidence. J. Zool. 288, 1–20 (2012).

    Google Scholar 

  8. Holsti, L. & Grunau, R. E. Initial validation of the behavioral indicators of infant pain (BIIP). Pain 132, 264–272 (2007).

    PubMed  PubMed Central  Google Scholar 

  9. Mosele, M. et al. Psychometric properties of the pain assessment in advanced dementia scale compared to self assessment of pain in elderly patients. Dement. Geriatr. Cogn. Disord. 34, 38–43 (2012).

    CAS  PubMed  Google Scholar 

  10. Reid, J. et al. Development of the short-form Glasgow composite measure pain scale (CMPS-SF) and derivation of an analgesic intervention score. Anim. Welf. 16, 97–104 (2007).

    CAS  Google Scholar 

  11. Graubner, C., Gerber, V., Doherr, M. & Spadavecchia, C. Clinical application and reliability of a post abdominal surgery pain assessment scale (PASPAS) in horses. Vet. J. 188, 178–183 (2011).

    CAS  PubMed  Google Scholar 

  12. Wright, J. G. Veterinary Anaesthesia (Alexander Eger, Inc., 1941).

  13. Kosek, E. et al. Do we need a third mechanistic descriptor for chronic pain states? Pain 157, 1382–1386 (2016).

    PubMed  Google Scholar 

  14. Tollison, C. (ed.) in Handbook of Chronic Pain Management (Williams & Wilkins, 1989).

  15. Primason, L., Gleed, R. & Boesch, J. Epidural anaesthesia for treatment of neuropathic pain associated with pelvic limb amputation in a domestic shorthair cat. Vet. Rec. Case Rep. https://doi.org/10.1136/vetreccr-2017-000527 (2017).

    Article  Google Scholar 

  16. Looney, A. Oncology pain in veterinary patients. Top. Companion Anim. Med. 25, 32–44 (2010).

    PubMed  Google Scholar 

  17. de Grauw, J. C. & van Loon, J. P. Systematic pain assessment in horses. Vet. J. 209, 14–22 (2016).

    PubMed  Google Scholar 

  18. Klinck, M. P. et al. Translational pain assessment: could natural animal models be the missing link? Pain 158, 1633–1646 (2017).

    PubMed  Google Scholar 

  19. Hainline, B. et al. International olympic committee consensus statement on pain management in elite athletes. Br. J. Sports Med. 51, 1245–1258 (2017).

    PubMed  Google Scholar 

  20. Gregory, N. S. et al. An overview of animal models of pain: disease models and outcome measures. J. Pain 14, 1255–1269 (2013).

    PubMed  Google Scholar 

  21. Caterina, M. J. et al. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389, 816–824 (1997).

    CAS  PubMed  Google Scholar 

  22. Facer, P. et al. Differential expression of the capsaicin receptor TRPV1 and related novel receptors TRPV3, TRPV4 and TRPM8 in normal human tissues and changes in traumatic and diabetic neuropathy. BMC Neurol. 7, 11 (2007).

    PubMed  PubMed Central  Google Scholar 

  23. O’Neill, J. et al. Unravelling the mystery of capsaicin: a tool to understand and treat pain. Pharmacol. Rev. 64, 939–971 (2012).

    PubMed  PubMed Central  Google Scholar 

  24. Mogil, J. S. Animal models of pain: progress and challenges. Nat. Rev. Neurosci. 10, 283–294 (2009).

    CAS  PubMed  Google Scholar 

  25. Leal, S. L. & Yassa, M. A. Neurocognitive aging and the hippocampus across species. Trends Neurosci. 38, 800–812 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Tromp, D., Dufour, A., Lithfous, S., Pebayle, T. & Després, O. Episodic memory in normal aging and Alzheimer disease: insights from imaging and behavioral studies. Ageing Res. Rev. 24, 232–262 (2015).

    CAS  PubMed  Google Scholar 

  27. Espinosa, A. et al. A longitudinal follow-up of 550 mild cognitive impairment patients: evidence for large conversion to dementia rates and detection of major risk factors involved. J. Alzheimers Dis. 34, 769–780 (2013).

    PubMed  Google Scholar 

  28. Scheltens, P. et al. Alzheimer’s disease. Lancet 388, 505–517 (2016).

    CAS  PubMed  Google Scholar 

  29. Lane, C. A., Hardy, J. & Schott, J. M. Alzheimer’s disease. Eur. J. Neurol. 25, 59–70 (2018).

    CAS  PubMed  Google Scholar 

  30. Drummond, E. & Wisniewski, T. Alzheimer’s disease: experimental models and reality. Acta Neuropathol. 133, 155–175 (2017).

    CAS  PubMed  Google Scholar 

  31. Head, E. et al. Beta-amyloid deposition and tau phosphorylation in clinically characterized aged cats. Neurobiol. Aging 26, 749–763 (2005).

    CAS  PubMed  Google Scholar 

  32. Neilson, J. C., Hart, B. L., Cliff, K. D. & Ruehl, W. W. Prevalence of behavioral changes associated with age-related cognitive impairment in dogs. J. Am. Vet. Med. Assoc. 218, 1787–1791 (2001).

    CAS  PubMed  Google Scholar 

  33. Hart, B. L. Effect of gonadectomy on subsequent development of age-related cognitive impairment in dogs. J. Am. Vet. Med. Assoc. 219, 51–56 (2001).

    CAS  PubMed  Google Scholar 

  34. Sarasa, M. & Pesini, P. Natural non-trasgenic animal models for research in Alzheimer’s disease. Curr. Alzheimer Res. 6, 171–178 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Rusbridge, C. et al. An aged canid with behavioral deficits exhibits blood and cerebrospinal fluid amyloid beta oligomers. Front. Aging Neurosci. 10, 7 (2018).

    PubMed  PubMed Central  Google Scholar 

  36. Gunn-Moore, D., Kaidanovich-Beilin, O., Gallego Iradi, M. C., Gunn-Moore, F. & Lovestone, S. Alzheimer’s disease in humans and other animals: a consequence of postreproductive life span and longevity rather than aging. Alzheimers Dement. 14, 195–204 (2018).

    PubMed  Google Scholar 

  37. Youssef, S. A. et al. Pathology of the aging brain in domestic and laboratory animals, and animal models of human neurodegenerative diseases. Vet. Pathol. 53, 327–348 (2016).

    CAS  PubMed  Google Scholar 

  38. Pan, Y. et al. Dietary supplementation with medium-chain TAG has long-lasting cognition-enhancing effects in aged dogs. Br. J. Nutr. 103, 1746–1754 (2010).

    CAS  PubMed  Google Scholar 

  39. Kapl, D. & Rudolphi, K. A. New pharmacologic aspects in the neurologic profile of propentofylline (Karsivan ad us. vet.) [German]. Tierarztl. Prax. Ausg. K. Klientiere Heimtiere 26, 317–321 (1998).

    CAS  Google Scholar 

  40. Lemere, C. A. et al. Alzheimer’s disease abeta vaccine reduces central nervous system abeta levels in a non-human primate, the Caribbean vervet. Am. J. Pathol. 165, 283–297 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Scholtzova, H. et al. Innate immunity stimulation via toll-like receptor 9 ameliorates vascular amyloid pathology in Tg-SwDI mice with associated cognitive benefits. J. Neurosci. 37, 936–959 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Davis, P. R. et al. Aβ vaccination in combination with behavioral enrichment in aged beagles: effects on cognition, Aβ, and microhemorrhages. Neurobiol. Aging 49, 86–99 (2017).

    CAS  PubMed  Google Scholar 

  43. Gunn-Moore, D., Moffat, K., Christie, L.-A. & Head, E. Cognitive dysfunction and the neurobiology of ageing in cats. J. Small Anim. Pract. 48, 546–553 (2007).

    CAS  PubMed  Google Scholar 

  44. Gunn-Moore, D. A. et al. Ageing changes in cat brains demonstrated by beta-amyloid and AT8-immunoreactive phosphorylated tau deposits. J. Feline Med. Surg. 8, 234–242 (2006).

    PubMed  Google Scholar 

  45. Grone, B. P. & Baraban, S. C. Animal models in epilepsy research: legacies and new directions. Nat. Neurosci. 18, 339–343 (2015).

    CAS  PubMed  Google Scholar 

  46. Potschka, H., Fischer, A., von Rüden, E.-L., Hülsmeyer, V. & Baumgärtner, W. Canine epilepsy as a translational model? Epilepsia 54, 571–579 (2013).

    CAS  PubMed  Google Scholar 

  47. Podell, M. et al. 2015 ACVIM small animal consensus statement on seizure management in dogs. J. Vet. Intern. Med. 30, 477–490 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Berendt, M. et al. International veterinary epilepsy task force consensus report on epilepsy definition, classification and terminology in companion animals. BMC Vet. Res. 11, 182 (2015).

    PubMed  PubMed Central  Google Scholar 

  49. Bhatti, S. F. M. et al. International veterinary epilepsy task force consensus proposal: medical treatment of canine epilepsy in Europe. BMC Vet. Res. 11, 176 (2015).

    PubMed  PubMed Central  Google Scholar 

  50. De Risio, L. et al. International veterinary epilepsy task force consensus proposal: diagnostic approach to epilepsy in dogs. BMC Vet. Res. 11, 148 (2015).

    PubMed  PubMed Central  Google Scholar 

  51. Hülsmeyer, V.-I. et al. International veterinary epilepsy task force’s current understanding of idiopathic epilepsy of genetic or suspected genetic origin in purebred dogs. BMC Vet. Res. 11, 175 (2015).

    PubMed  PubMed Central  Google Scholar 

  52. Kearsley-Fleet, L., O’Neill, D. G., Volk, H. A., Church, D. B. & Brodbelt, D. C. Prevalence and risk factors for canine epilepsy of unknown origin in the UK. Vet. Rec. 172, 338 (2013).

    CAS  PubMed  Google Scholar 

  53. Licht, B. G. et al. Clinical presentations of naturally occurring canine seizures: similarities to human seizures. Epilepsy Behav. 3, 460–470 (2002).

    PubMed  Google Scholar 

  54. Patterson, E. E. et al. Canine status epilepticus treated with fosphenytoin: a proof of principle study. Epilepsia 56, 882–887 (2015).

    CAS  PubMed  Google Scholar 

  55. Kwan, P. et al. Definition of drug resistant epilepsy: consensus proposal by the ad hoc task force of the ILAE commission on therapeutic strategies. Epilepsia 51, 1069–1077 (2010).

    CAS  PubMed  Google Scholar 

  56. Lohi, H. et al. Expanded repeat in canine epilepsy. Science 307, 81 (2005).

    CAS  PubMed  Google Scholar 

  57. Alves, L. et al. Polymorphisms in the ABCB1 gene in phenobarbital responsive and resistant idiopathic epileptic Border Collies. J. Vet. Intern. Med. 25, 484–489 (2011).

    CAS  PubMed  Google Scholar 

  58. Wielaender, F. et al. Generalized myoclonic epilepsy with photosensitivity in juvenile dogs caused by a defective DIRAS family GTPase 1. Proc. Natl Acad. Sci. USA 114, 2669–2674 (2017).

    CAS  PubMed  Google Scholar 

  59. James, F. M. K. et al. Diagnostic utility of wireless video-electroencephalography in unsedated dogs. J. Vet. Intern. Med. 31, 1469–1476 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Davis, K. A. et al. A novel implanted device to wirelessly record and analyze continuous intracranial canine EEG. Epilepsy Res. 96, 116–122 (2011).

    PubMed  PubMed Central  Google Scholar 

  61. Davis, K. A. et al. Mining continuous intracranial EEG in focal canine epilepsy: relating interictal bursts to seizure onsets. Epilepsia 57, 89–98 (2016).

    PubMed  Google Scholar 

  62. Sillay, K. A. et al. Long-term measurement of impedance in chronically implanted depth and subdural electrodes during responsive neurostimulation in humans. Brain Stimul. 6, 718–726 (2013).

    PubMed  Google Scholar 

  63. Ung, H. et al. Temporal behavior of seizures and interictal bursts in prolonged intracranial recordings from epileptic canines. Epilepsia 57, 1949–1957 (2016).

    PubMed  PubMed Central  Google Scholar 

  64. Martlé, V. et al. Vagus nerve stimulator placement in dogs: surgical implantation technique, complications, long-term follow-up, and practical considerations. Vet. Surg. 45, 71–78 (2016).

    PubMed  Google Scholar 

  65. Richter, A., Hamann, M., Wissel, J. & Volk, H. A. Dystonia and paroxysmal dyskinesias: under-recognized movement disorders in domestic animals? A comparison with human dystonia/paroxysmal dyskinesias. Front. Vet. Sci. 2, 65 (2015).

    PubMed  PubMed Central  Google Scholar 

  66. Urkasemsin, G. & Olby, N. J. Canine paroxysmal movement disorders. Vet. Clin. North Am. Small Anim. Pract. 44, 1091–1102 (2014).

    PubMed  Google Scholar 

  67. de Lahunta, A., Glass, E. N. & Kent, M. Classifying involuntary muscle contractions. Compend. Contin. Educ. Pract. Vet. 28, 516–530 (2006).

    Google Scholar 

  68. Vanhaesebrouck, A. E. et al. A novel movement disorder in related male Labrador Retrievers characterized by extreme generalized muscular stiffness. J. Vet. Intern. Med. 25, 1089–1096 (2011).

    CAS  PubMed  Google Scholar 

  69. Geiger, K. M. & Klopp, L. S. Use of a selective serotonin reuptake inhibitor for treatment of episodes of hypertonia and kyphosis in a young adult Scottish Terrier. J. Am. Vet. Med. Assoc. 235, 168–171 (2009).

    CAS  PubMed  Google Scholar 

  70. Lowrie, M. & Garosi, L. Natural history of canine paroxysmal movement disorders in Labrador retrievers and Jack Russell terriers. Vet. J. 213, 33–37 (2016).

    PubMed  Google Scholar 

  71. Garosi, L. S., Rossmeisl, J. H., de Lahunta, A., Shelton, G. D. & Lennox, G. Primary orthostatic tremor in Great Danes. J. Vet. Intern. Med. 19, 606–609 (2005).

    PubMed  Google Scholar 

  72. Forman, O. P. et al. Parallel mapping and simultaneous sequencing reveals deletions in BCAN and FAM83H associated with discrete inherited disorders in a domestic dog breed. PLOS Genet. 8, e1002462 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Gill, J. L. et al. A canine BCAN microdeletion associated with episodic falling syndrome. Neurobiol. Dis. 45, 130–136 (2012).

    PubMed  PubMed Central  Google Scholar 

  74. Harcourt-Brown, T. Anticonvulsant responsive, episodic movement disorder in a German shorthaired pointer. J. Small Anim. Pract. 49, 405–407 (2008).

    CAS  PubMed  Google Scholar 

  75. Law, T. H. et al. A randomised trial of a medium-chain TAG diet as treatment for dogs with idiopathic epilepsy. Br. J. Nutr. 114, 1438–1447 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Lowrie, M. et al. The clinical and serological effect of a gluten-free diet in border terriers with epileptoid cramping syndrome. J. Vet. Intern. Med. 29, 1564–1568 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Lowrie, M. et al. Characterization of paroxysmal gluten-sensitive dyskinesia in Border Terriers using serological markers. J. Vet. Intern. Med. https://doi.org/10.1111/jvim.15038 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Di Lazzaro, V., Capone, F., Cammarota, G., Di Giuda, D. & Ranieri, F. Dramatic improvement of parkinsonian symptoms after gluten-free diet introduction in a patient with silent celiac disease. J. Neurol. 261, 443–445 (2014).

    PubMed  Google Scholar 

  79. Merikangas, K. R. et al. Lifetime prevalence of mental disorders in U. S. adolescents: results from the national comorbidity survey replication—adolescent supplement (NCS-A). J. Am. Acad. Child Adolesc. Psychiatry 49, 980–989 (2010).

    PubMed  PubMed Central  Google Scholar 

  80. Scarlett, J. M., Salman, M. D., New, J. G. & Kass, P. H. Reasons for relinquishment of companion animals in U. S. animal shelters: selected health and personal issues. J. Appl. Anim. Welf. Sci. 2, 41–57 (1999).

    CAS  PubMed  Google Scholar 

  81. Flannigan, G. & Dodman, N. H. Risk factors and behaviors associated with separation anxiety in dogs. J. Am. Vet. Med. Assoc. 219, 460–466 (2001).

    CAS  PubMed  Google Scholar 

  82. Szechtman, H. et al. Obsessive-compulsive disorder: insights from animal models. Neurosci. Biobehav. Rev. 76, 254–279 (2017).

    PubMed  Google Scholar 

  83. Geller, D. A. et al. Which SSRI? A meta-analysis of pharmacotherapy trials in pediatric obsessive-compulsive disorder. Am. J. Psychiatry 160, 1919–1928 (2003).

    PubMed  Google Scholar 

  84. Ahmari, S. E. et al. Repeated cortico-striatal stimulation generates persistent OCD-like behavior. Science 340, 1234–1239 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. March, J. S. et al. The treatment for adolescents with depression study (TADS): long-term effectiveness and safety outcomes. Arch. Gen. Psychiatry 64, 1132–1143 (2007).

    CAS  PubMed  Google Scholar 

  86. Go, Y. Y., Balasuriya, U. B. R. & Lee, C.-K. Zoonotic encephalitides caused by arboviruses: transmission and epidemiology of alphaviruses and flaviviruses. Clin. Exp. Vaccine Res. 3, 58–77 (2014).

    PubMed  Google Scholar 

  87. Roehrig, J. T. et al. Mutation of the dengue virus type 2 envelope protein heparan sulfate binding sites or the domain III lateral ridge blocks replication in Vero cells prior to membrane fusion. Virology 441, 114–125 (2013).

    CAS  PubMed  Google Scholar 

  88. Tizard, I., Ball, J., Stoica, G. & Payne, S. The pathogenesis of bornaviral diseases in mammals. Anim. Health Res. Rev. 17, 92–109 (2016).

    PubMed  Google Scholar 

  89. Hoffmann, B. et al. A variegated squirrel bornavirus associated with fatal human encephalitis. N. Engl. J. Med. 373, 154–162 (2015).

    CAS  PubMed  Google Scholar 

  90. Irani, S. R. et al. Faciobrachial dystonic seizures precede Lgi1 antibody limbic encephalitis. Ann. Neurol. 69, 892–900 (2011).

    PubMed  Google Scholar 

  91. Pakozdy, A. et al. Suspected limbic encephalitis and seizure in cats associated with voltage-gated potassium channel (VGKC) complex antibody. J. Vet. Intern. Med. 27, 212–214 (2013).

    CAS  PubMed  Google Scholar 

  92. Prüss, H. et al. Anti-NMDA receptor encephalitis in the polar bear (Ursus maritimus) knut. Sci. Rep. 5, 12805 (2015).

    PubMed  PubMed Central  Google Scholar 

  93. Prüss, H. et al. Retrospective analysis of NMDA receptor antibodies in encephalitis of unknown origin. Neurology 75, 1735–1739 (2010).

    PubMed  Google Scholar 

  94. Fang, B. et al. Autoimmune glial fibrillary acidic protein astrocytopathy: a novel meningoencephalomyelitis. JAMA Neurol. 73, 1297–1307 (2016).

    PubMed  Google Scholar 

  95. Matsuki, N. et al. Prevalence of autoantibody in cerebrospinal fluids from dogs with various CNS diseases. J. Vet. Med. Sci. 66, 295–297 (2004).

    PubMed  Google Scholar 

  96. Lieberman, D. The Story of the Human Body: Evolution, Health, and Disease (Pantheon Books, New York, 2013).

    Google Scholar 

  97. Ewald, P. W. & Burch, G. E. Evolution of infectious disease (Oxford Univ. Press, 1997).

  98. Salahuddin, P., Rabbani, G. & Khan, R. H. The role of advanced glycation end products in various types of neurodegenerative disease: a therapeutic approach. Cell. Mol. Biol. Lett. 19, 407–437 (2014).

    CAS  PubMed  Google Scholar 

  99. Raichlen, D. A. & Polk, J. D. Linking brains and brawn: exercise and the evolution of human neurobiology. Proc. Biol. Sci. 280, 20122250 (2013).

    PubMed  PubMed Central  Google Scholar 

  100. Marlowe, F. W. Hunter-gatherers and human evolution. Evol. Anthropol. Issues News Rev. 14, 54–67 (2005).

    Google Scholar 

  101. Cotman, C. W. & Berchtold, N. C. Exercise: a behavioral intervention to enhance brain health and plasticity. Trends Neurosci. 25, 295–301 (2002).

    CAS  PubMed  Google Scholar 

  102. Duzel, E., van Praag, H. & Sendtner, M. Can physical exercise in old age improve memory and hippocampal function? Brain J. Neurol. 139, 662–673 (2016).

    Google Scholar 

  103. Nyberg, J. et al. Cardiovascular fitness and later risk of epilepsy: a Swedish population-based cohort study. Neurology 81, 1051–1057 (2013).

    PubMed  Google Scholar 

  104. Vivar, C., Potter, M. C. & van Praag, H. All about running: synaptic plasticity, growth factors and adult hippocampal neurogenesis. Curr. Top. Behav. Neurosci. 15, 189–210 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Mieda, M. The roles of orexins in sleep/wake regulation. Neurosci. Res. 118, 56–65 (2017).

    CAS  PubMed  Google Scholar 

  106. Charalambous, M., Shivapour, S. K., Brodbelt, D. C. & Volk, H. A. Antiepileptic drugs’ tolerability and safety – a systematic review and meta-analysis of adverse effects in dogs. BMC Vet. Res. 12, 79 (2016).

    PubMed  PubMed Central  Google Scholar 

  107. Schmidt, F. et al. Detection and quantification of β-Amyloid, Pyroglutamyl Aβ, and Tau in aged canines. J. Neuropathol. Exp. Neurol. 74, 912–923 (2015).

    CAS  PubMed  Google Scholar 

  108. Braak, H., Braak, E. & Strothjohann, M. Abnormally phosphorylated tau protein related to the formation of neurofibrillary tangles and neuropil threads in the cerebral cortex of sheep and goat. Neurosci. Lett. 171, 1–4 (1994).

    CAS  PubMed  Google Scholar 

  109. Nelson, P. T., Greenberg, S. G. & Saper, C. B. Neurofibrillary tangles in the cerebral cortex of sheep. Neurosci. Lett. 170, 187–190 (1994).

    CAS  PubMed  Google Scholar 

  110. Roertgen, K. E. et al. A beta-associated cerebral angiopathy and senile plaques with neurofibrillary tangles and cerebral hemorrhage in an aged wolverine (Gulo gulo). Neurobiol. Aging 17, 243–247 (1996).

    CAS  PubMed  Google Scholar 

  111. Cork, L. C. et al. Neurofibrillary tangles and senile plaques in aged bears. J. Neuropathol. Exp. Neurol. 47, 629–641 (1988).

    CAS  PubMed  Google Scholar 

  112. Bons, N., Rieger, F., Prudhomme, D., Fisher, A. & Krause, K.-H. Microcebus murinus: a useful primate model for human cerebral aging and Alzheimer’s disease? Genes Brain Behav. 5, 120–130 (2006).

    CAS  PubMed  Google Scholar 

  113. Rosen, R. F. et al. Tauopathy with paired helical filaments in an aged chimpanzee. J. Comp. Neurol. 509, 259–270 (2008).

    PubMed  PubMed Central  Google Scholar 

  114. Cramer, P. E. et al. Aging African green monkeys manifest transcriptional, pathological, and cognitive hallmarks of human Alzheimer’s disease. Neurobiol. Aging 64, 92–106 (2018).

    CAS  PubMed  Google Scholar 

  115. Packer, R. A. et al. Characterization and mode of inheritance of a paroxysmal dyskinesia in Chinook dogs. J. Vet. Intern. Med. 24, 1305–1313 (2010).

    CAS  PubMed  Google Scholar 

  116. Ramsey, I. K., Chandler, K. E. & Franklin, R. J. A movement disorder in boxer pups. Vet. Rec. 144, 179–180 (1999).

    Google Scholar 

  117. Kolicheski, A. L. et al. A homozygous PIGN missense mutation in Soft-Coated Wheaten Terriers with a canine paroxysmal dyskinesia. Neurogenetics 18, 39–47 (2017).

    CAS  PubMed  Google Scholar 

  118. Platt, S. R., Stefani, A. D. & Wieczorek, L. Primary orthostatic tremor in a Scottish deerhound. Vet. Rec. 159, 495–496 (2006).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Reviewer information

Nature Reviews Neurology thanks Á. Pákozdy, C. Rusbridge and T. Sabin for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to writing the article. O.D. and B.N.-H. reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Orrin Devinsky.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devinsky, O., Boesch, J.M., Cerda-Gonzalez, S. et al. A cross-species approach to disorders affecting brain and behaviour. Nat Rev Neurol 14, 677–686 (2018). https://doi.org/10.1038/s41582-018-0074-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-018-0074-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing