Allometries of the brain to body size relationship in eutherian mammals are examined in this study as they can be used for comparative analyses concerning encephalization. In contrast with some modern presentations of this issue, an older concept is revived and expanded through this author’s current study. Three allometries with clearly different slopes are valid and lead to reliable results: interspecific, intraspecific, and ontogenetic allometries. Interspecific allometries follow lines with slope values of 0.56 or 0.63 for larger and smaller species, respectively, and characterize different average encephalization plateaus with rodents and lagomorphs generally more strongly encephalized compared to basal insectivores. Artiodactyls, perissodactyls and carnivores as a whole are again on a higher but rather similar plateau. Several species of carnivores have reached different encephalization levels with respect to their average plateau indicating diverse radiations. A phylogenetic brain size increase from fossil to recent radiations is also evident. Intraspecific allometries have slope values of about 0.25. These are of help in comparing brain sizes of ancestral species with their domesticated relatives. Domestication has generally led to a brain size decrease, but species on higher encephalization plateaus show this trend more strongly than species on a lower level of encephalization. Several brain parts and the sense organs also decrease in size during the domestication process, but vary arbitrarily and to different degrees. Ontogenetic growth allometries are species-specific, but are especially different between altricial and precocial mammals. A very steep 1st phase slope of highly encephalized species is particularly useful for understanding evolutionary and adaptive phenomena. Domesticated mammals that have become feral do not show an increase in brain size despite living many generations in wild habitats.

1.
Aboitiz F (1996) Does bigger mean better? Evolutionary determinants of brain size and structure. Brain Behav Evol 47:225–245.
2.
Anokhin PK (1964) Systemogenesis as a general regulator of brain development. In: The Developing Brain (Himwich WA, Himwich HE, eds). Progr Brain Res 9:54–86.
3.
Apfelbach R, Kruska D (1979) Zur postnatalen Hirngewichtsentwicklung beim Frettchen Mustela putorius f. furo (Mustelidae; Mammalia) Z Säugetierkunde 44:127–131.
4.
Armstrong E (1982) A look at relative brain size in mammals. Neurosci Lett 34:101–104.
5.
Armstrong E (1983) Metabolism and relative brain size. Science 220:1302–1304.
6.
Armstrong E (1990) Brains, bodies and metabolism. Brain Behav Evol 36:166–176.
7.
Baron G, Stephan H, Frahm HD (1996) Comparative Neurobiology in Chiroptera: Vol 1, Basel: Birkhäuser Verlag.
8.
Bedi KS, Bhide PG (1988) Effects of environmental diversity on brain morphology. Early Human Dev 17:107–143.
9.
Belyaev DK (1969) Domestication of animals. Sci J 50:47–53.
10.
Belyaev DK (1979) Destabilizing selection as a factor in domestication. J Heredity 70:301–308.
11.
Belyaev DK (1980) Destabilisierende Selektion als Evolutionsfaktor. Arch Tierzucht 23:59–63.
12.
Bielack T, Pucek Z (1960) Seasonal changes in the brain weight of the common shrew (Sorex araneus Linnaeus, 1758). Acta Theriol 3:297–300.
13.
Boice R (1970) The effect of domestication on avoidance learning in the Norway rat. Psychon Sci 18:3–14.
14.
Boice R (1972) Some behavioral tests of domestication in Norway rats. Behaviour 42:198–231.
15.
Briedermann L (1971) Ermittlungen zur Aktivitätsperiodik des Mitteleuropäischen Wildschweins (Sus s. scrofa L.). Zool Garten NF 40:302–327.
16.
Brodmann K (1909) Vergleichende Lokalisationslehre der Großhirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Leipzig: Barth
17.
Bronson RT (1979) Brain weight – body weight scaling in breeds of dogs and cats. Brain Behav Evol 16:227–236.
18.
Burda H (1985) Effects of domestication on morphometry of ear structures in Norway rats. In: Functional Morphology in Vertebrates. (Duncker HR, Fleischer G, eds) Stuttgart, New York: Fischer Verlag.
19.
Butler AB, Hodos W (1996) Comparative Vertebrate Neuroanatomy. Evolution and Adaptation. New York: Wiley-Liss.
20.
Cabon K (1956) Untersuchungen über die saisonale Veränderlichkeit des Gehirnes bei der kleinen Spitzmaus (Sorex minutus minutus L.). Ann Univ M Curie-Sklodowska, Sect C, 10:93–115.
21.
Carroll RL (1988) Vertebrate Paleontology and Evolution. New York: Freeman.
22.
Count EW (1947) Brain and body weight in man: Their antecedents in growth and evolution. Ann New York Acad Sci 46:993–1122.
23.
Darwin C (1868) Variation of Animals and Plants under Domestication. 2 Vols. London.
24.
Dehnel A (1949) Badania nad rodzajem Sorex L. Ann Univ M Curie -Sklodowska, Sect C, 4:17–102.
25.
Dehnel A (1950) Badania nad rodzajem Neomys Kaup. Ann Univ M Curie-Sklodowska, Sect C 5:1–63.
26.
Derenne P (1972) Données craniométriques sur le chat haret (Felis catus) de l`archipel de Kerguelen. Mammalia 36:459–481.
27.
Diamond MC (1967) Extensive cortical depth measurements and neuron size increases in the cortex of environmentally enriched rats. J Comp Neurol 131:357–364.
28.
Diamond MR, Krech D, Rosenzweig MR (1964) The effects of an enriched environment on the histology of the rat cerebral cortex. J Comp Neurol 123:111–120.
29.
Dongen PAM Van (1998) Brain size in vertebrates. In: The Central Nervous System of Vertebrates, Vol 1 (Nieuwenhuys R, ten Donkelaar HJ, Nicholson C, eds), pp 2099–2134. Heidelberg: Springer Verlag.
30.
Dubois E (1897) Sur le rapport du poids de l’encéphale avec grandeur du corps chez les mammifères. Bull Mém Soc Anthrop, Paris (Sér 4) 8:337–376.
31.
Dubois E (1914) Die gesetzmässige Beziehung von Gehirnmasse zu Körpergrösse bei den Wirbeltieren. Z Morph Anthrop 18:323–350.
32.
Ebinger P (1972) Vergleichend–quantitative Untersuchungen an Wild- und Laborratten. Z Tierzücht Zücht-biol 89:34–57.
33.
Ebinger P (1974) A cytoarchitectonic volumetric comparison of brains in wild and domestic sheep. Z Anat Entwickl-Gesch 144:268–302.
34.
Ebinger P (1975a) Quantitative investigations of visual brain structures in wild and domestic sheep. Anat Embryol 146:313–323.
35.
Ebinger P (1975b) A cytoarchitectonic volumetric comparison of the area gigantopyramidalis in wild and domestic sheep. Anat Embryol 147:167–175.
36.
Ebinger P, Macedo H, Röhrs M (1984) Hirngrößenänderungen vom Wild- zum Hausmeerschweinchen. Z Zool Syst Evolut-forsch 22:77–80.
37.
Enders RK (1952) Reproduction in the mink (Mustela vison). Proc Am Philos Soc 96:691–755.
38.
Espenkötter E (1982) Vergleichende quantitative Untersuchungen an Iltissen und Frettchen. Diss. thesis, Veterinary Highschool Hannover.
39.
Fischer CJ (1973) Vergleichende quantitative Untersuchungen an Wildkaninchen und Hauskaninchen. Diss. thesis, Veterinary Highschool Hannover.
40.
Fox JH, Wilczynski W (1986) Allometry of major CNS divisions: towards a reevaluation of somatic brain-body scaling. Brain Behav Evol 28:157–169.
41.
Frick H, Nord HJ (1963) Domestikation und Hirngewicht. Anat Anz 113:307–316.
42.
Gittleman JL (1986) Carnivore brain size, behavioural ecology, and phylogeny. J Mammal 67:23–36.
43.
Green JD, Clemente CD, De Groot J (1957) Rhinencephalic lesions and behavior in cats. J Comp Neurol 108:505–536.
44.
Güntherschulze J (1979) Studien zur Kenntnis der Regio olfactoria von Wild- und Hausschwein (Sus scrofa L. 1768 und Sus scrofa f. domestica). Zool Anz 202:256–279.
45.
Gundlach H (1968) Brutfürsorge, Verhaltensontogenese und Tagesperiodik beim Europäischen Wildschwein (Sus scrofa L.). Z Tierpsychol 25:955–995.
46.
Hafez ESE, Sumption LJ, Jakway JS (1962) The behaviour of swine. In: The Behaviour of Domestic Animals (Hafez ESE, ed) pp 334–369. London: Tindall and Cox.
47.
Haller A von (1762) Elementa physiologiae corporis humani. Vol. 4. Lausanne.
48.
Hare B, Brown M, Williamson C, Tomasello M (2002) The domestication of social cognition in dogs. Science 298:1634–1636.
49.
Harvey PH (1988) Allometric analysis and brain size. In: Intelligence and Evolutionary Biology (Jerison HJ, Jerison I, eds). NATO ASI Series, Vol G17. pp 199–210. Berlin, Heidelberg: Springer-Verlag.
50.
Harvey PH, Bennett PM (1983) Brain size, energetics, ecology, and life history patterns. Nature 306:314–315.
51.
Harvey PH, Krebs JR (1990) Comparing brains. Science 249:140–145.
52.
Hassler R (1964) Zur funktionellen Anatomie des limbischen Systems. Nervenarzt 35:386–396.
53.
Heptner VG, Naumov NP (1974) Die Säugetiere der Sowjetunion. Vol 2. Seekühe und Raubtiere. Jena: VEB Fischer.
54.
Herre W, Röhrs M (1990) Haustiere – zoologisch gesehen. Ed 2, Stuttgart, New York: Fischer Verlag.
55.
Hodos W (1988) Comparative neuroanatomy and the evolution of intelligence. In: Intelligence and Evolutionary Biology (Jerison HJ, Jerison I, eds) NATO ASI Series, Vol G17, pp 93–107.
56.
Hofman MA (1982) Encephalization in mammals in relation to the size of the cerebral cortex. Brain Behav Evol 20:84–96.
57.
Hofman MA (1983) Energy metabolism, brain size and longevity in mammals. Q Rev Biol 58:495–512.
58.
Hofman MA (1989) On the evolution and geometry of the brain in mammals. Prog Neurobiol 32:137–158.
59.
Iwaniuk AN, Nelson JE (2001) A comparative analysis of relative brain size in waterfowl (Anseriformes). Brain Behav Evol 57:87–97.
60.
Jerison HJ (1973) Evolution of the Brain and Intelligence. New York, London: Academic Press.
61.
Jerison HJ (1988) Evolutionary biology of intelligence: The nature of the problem. In: Intelligence and Evolutionary Biology. (Jerison HJ, Jerison I, eds) NATO ASI Series, Vol G17, pp 1–11. Berlin, Heidelberg: Springer-Verlag.
62.
Jerison HJ (1991) Brain size and the evolution of mind. New York: Am Mus Nat Hist.
63.
Jerison HJ, Jerison I, eds (1988) Intelligence and Evolutionary Biology. NATO ASI Series, Vol G17. Berlin, Heidelberg: Springer Verlag.
64.
Kappers JA (1936a) Brain-bodyweight relation in human ontogenesis. Proc R Acad Amsterdam 39:871–880.
65.
Kappers JA (1936b) Brain-bodyweight relation in human ontogenesis and the ‘indice de valeur cérébrale’ of Anthony and Coupin. Proc R Acad Amsterdam 39:1019–1028.
66.
Kappers CUA, Huber GC, Crosby EC (1967) The Comparative Anatomy of the Nervous System of Vertebrates Including Man, Vol 1–3. New York: Hafner.
67.
Klatt B (1955) Noch einmal: Hirngröße und Körpergröße. Zool Anz 155:215–232.
68.
Klatt B, Vorsteher H (1923) Studien zum Domestikationsproblem II. Bibl Gen Leipzig 2:1–180.
69.
Kretschmann H-J, Wingert F (1971) Computeranwendungen bei Wachstumsproblemen in Biologie und Medizin. Berlin: Springer.
70.
Kruska D (1970a) Über die Evolution des Gehirns in der Ordnung Artiodactyla Owen, 1848, insbesondere der Teilordnung Suina Gray, 1868. Z Säugetierkunde 35:214–238.
71.
Kruska D (1970b) Vergleichend cytoarchitektonische Untersuchungen an Gehirnen von Wild- und Hausschweinen. Z Anat Entwickl- Gesch 131:291–324.
72.
Kruska D (1972) Volumenvergleich optischer Hirnzentren bei Wild- und Hausschweinen, Z Anat Entwickl-Gesch 138:265–282.
73.
Kruska D (1973) Cerebralisation, Hirnevolution und domestikationsbedingte Hirngrössenänderungen innerhalb der Ordnung Perissodactyla Owen, 1848 und ein Vergleich mit der Ordnung Artiodactyla Owen, 1848. Z Zool Syst Evolut-forsch 11:81–103.
74.
Kruska D (1975a) Über die postnatale Hirnentwicklung bei Procyon cancrivorus cancrivorus (Procyonidae; Mammalia). Z Säugetierkunde 40:243–256.
75.
Kruska D (1975b) Vergleichend-quantitative Untersuchungen an den Gehirnen von Wander- und Laborratten. I. Volumenvergleich des Gesamthirns und der klassischen Hirnteile. J Hirnforsch 16:469–483.
76.
Kruska D (1975c) Vergleichend-quantitative Untersuchungen an den Gehirnen von Wander- und Laborratten. II. Volumenvergleich allokortikaler Hirnzentren. J Hirnforsch 16:485–496.
77.
Kruska D (1977) Über die postnatale Hirnentwicklung beim Farmnerz Mustela vison f. dom. (Mustelidae; Carnivora). Z Säugetierkunde 42:240–255.
78.
Kruska D (1979) Vergleichende Untersuchungen an den Schädeln von subadulten und adulten Farmnerzen, Mustela vison f. dom. (Mustelidae; Carnivora). Z Säugetierkunde 44:360–375.
79.
Kruska D (1980) Domestikationsbedingte Hirngrössenänderungen bei Säugetieren. Z Zool Syst Evolut-forsch18:161–195.
80.
Kruska D (1982a) Hirngrößenänderungen bei Tylopoden während der Stammesgeschichte und in der Domestikation. Verh Dtsch Zool Ges 1982:173–183.
81.
Kruska D (1982b) Über das Gehirn des Zwergwildschweins, Sus (Porcula) salvanius Hodgson,1847. Ein Beitrag zur Problematik vergleichender Hirnuntersuchungen bei Säugetieren unterschiedlicher Körpergröße. Z Zool Syst Evolut-forsch 20:1–12.
82.
Kruska D (1987) How fast can total brain size change in mammals? J Hirnforsch 28:59–70.
83.
Kruska DCT (1988a) The brain of the basking shark (Cetorhinus maximus). Brain Behav Evol 32:353–363.
84.
Kruska D (1988b) Mammalian domestication and its effects on brain structure and behavior. In: The Evolutionary Biology of Intelligence. (Jerison HJ, Jerison I, eds). Nato ASI series in Ecology G17. pp 211–250. Berlin, Heidelberg: Springer-Verlag.
85.
Kruska D (1989) Gehirnveränderungen bei Säugetieren als Folge von Gefangenschaftshaltung? In: Die Illusion der Arche Noah. (Schneider E, Oelke H, Gross H, eds) pp 87–105. Göttingen: Econ Verlag.
86.
Kruska D (1993) Evidence of decrease in brain size in ranch mink, Mustela vison f. dom., during subadult postnatal ontogenesis. Brain Behav Evol 41:303–315.
87.
Kruska D (1996) The effect of domestication on brain size and composition in the mink (Mustela vison). J Zool (London) 239:645–661.
88.
Kruska D, Röhrs M (1974) Comparative-quantitative investigations on brains of feral pigs from the Galapagos Islands and of European domestic pigs. Z Anat Entwickl.-Gesch 144:61–73.
89.
Kruska D, Schott M (1977) Vergleichend-quantitative Untersuchungen an den Gehirnen von Wander- und Laborratten. III. Volumenvergleich optischer Hirnstrukturen. J Hirnforsch 18:59–67.
90.
Kruska DCT, Sidorovich VE (2003) Comparative allometric skull morphometrics in mink (Mustela vison Schreber, 1777) of Canadian and Belarus origin; taxonomic status. Mamm Biol 68:257–276.
91.
Kruska D, Stephan H (1973) Volumenvergleich allokortikaler Hirnzentren bei Wild- und Hausschweinen. Acta Anat 84:387– 415.
92.
Kuhlenbeck H (1977) The Central Nervous System of Vertebrates. Vol. 5/1. Basel: Karger.
93.
Kuhlenbeck H (1978) The Central Nervous System of Vertebrates.Vol. 5/2. Basel: Karger.
94.
Lapique L (1908) Le poids encéphalique en fonction du poids corporel entre individus d’une même espèce. Bull Mém Soc Anthrop Paris, 249–271.
95.
Leonard JA, Wayne RK, Wheeler J, Valadez R, Guillen S, Vila C (2002) Ancient DNA evidence for Old World origin of New World dogs. Science 298:1613–1616.
96.
Lever C (1985) Naturalized Mammals of the World. New York: Longman.
97.
Leybold A (2000) Vergleichend quantitative Untersuchungen an Gehirnen von Wild- und Labortieren der Art Meriones unguiculatus Milne-Edwards, 1867 (Mongolische Rennmaus). Diss. Thesis, Math.-Naturwiss. Fak., Universität Kiel.
98.
Löhmer R (1976) Zur Verhaltensontogenese bei Procyon cancrivorus cancrivorus (Procyonidae). Z. Säugetierkunde 41:42–58.
99.
Lorenz K (1959) Psychologie und Stammesgeschichte. In: Evolution der Organismen (Heberer G, ed) pp 131–170. Stuttgart: Fischer.
100.
MacIntosh NWG (1975) The origin of the dingo. An enigma. In: The Wild Canids (Fox MW, ed) pp 87–106. New York: Van Nostrand Reinhold.
101.
Mac Lean PD (1949) Psychosomatic disease and the ‘visceral brain’. Psychosom Med 11:338–353.
102.
Mac Lean PD (1952) Some psychiatric implications of physiological studies on frontotemporal portion of limbic system (visceral brain). Electroenceph Clin Neurophysiol 4:407–418.
103.
Mac Lean PD (1954) The limbic system and its hippocampal formation. Studies on animals and their possible application to man. J Neurosurg 11:29–44.
104.
Mac Lean PD (1992) The limbic system concept. In: The Temporal Lobes and the Limbic System (Trimble MR, Bolwig TG, eds) pp 1–14. Petersfield: Wrightson.
105.
Macphail EM (1982) Brain and Intelligence in Vertebrates. Oxford: Clarendon Press.
106.
Mangold-Wirz K (1966) Cerebralisation und Ontogenesemodus bei Eutheria. Acta Anat 63:449–508.
107.
Marino L (1998) A comparison of encephalization between odontocete cetaceans and anthropoid primates. Brain Behav Evol 51:230–238.
108.
Marshall CR, Raff EC, Raff RA (1994) Dollo’s law and the death and resurrection of genes. Proc Natl Acad Sci USA 91:12283–12287.
109.
Martin RD (1981) Relative brain size and basal metabolic rate in terrestrial vertebrates. Nature 293:57–60.
110.
Martin RD (1990) Primate Origins and Evolution. A Phylogenetic Reconstruction. London: Chapman and Hall.
111.
Martin RD, Harvey PH (1985) Brain size allometry, ontogeny and phylogeny. In: Size and Scaling in Primate Biology (Jungers WL, ed) pp147–172. New York: Plenum Press.
112.
Mason IL (1984) Evolution of Domesticated Animals. London, New York: Longman.
113.
Miklosi A, Kubinyi E, Topal J, Gacsi M, Viranyi Z, Csanyi V (2003) A simple reason for a big difference: Wolves do not look back at humans, but dogs do. Curr Biol 13:763–766.
114.
Nes NN, Einarson EJ, Lohi O, Joergensen G (1988) Beautiful Fur Animals and their Colour Genetics. Hilleroed, Denmark: Scientifur.
115.
Nieuwenhuys R (1998) Overall functional subdivisions of the mammalian brain. In: The Central Nervous System of Vertebrates, Vol 3 (Nieuwenhuys R, ten Donkelaar HJ, Nicholson C, eds) pp 2023–2041. Heidelberg: Springer.
116.
Northcutt RG, Kaas JH (1995) The emergence and evolution of mammalian neocortex. Trends Neurosci 18:373–379.
117.
Oboussier H, Schliemann H (1965) Hirn-Körpergewichtsbeziehungen bei Boviden. Z Säugetierkunde 30:464–471.
118.
Pagel MD, Harvey PH (1988) The taxon level effect problem in the evolution of mammalian brain size: facts and artefacts. Am Nat 132:344–359.
119.
Pagel MD, Harvey PH (1989) Taxonomic differences in the scaling of brain on body weight among mammals. Science 244:1589–1593.
120.
Peichl L (1992a) Morphological types of ganglion cells in the dog and wolf retina. J Comp Neurol 324:590–602.
121.
Peichl L (1992b) Topography of ganglion cells in the dog and wolf retina. J Comp Neurol 324:603–620.
122.
Pennisi E (2002) A shaggy dog history. Science 298:1540–1542.
123.
Pirlot P (1989) Brains and Behaviours. From binary structures to multiple functions. Frelighsburg: Editions Orbis Publishing.
124.
Plogmann D, Kruska D (1990) Volumetric comparison of auditory structures in the brains of European wild boars (Sus scrofa) and domestic pigs (Sus scrofa f. dom.). Brain Behav Evol 35:146–155.
125.
Portmann A (1952) Die allgemeine biologische Bedeutung der Cerebralisations-Studien. Bull Schweiz Akad Med Wiss 8:253–262.
126.
Portmann A (1957) Zur Gehirnentwicklung der Säuger und des Menschen in der Postembryonalzeit. Bull Schweiz Akad Med Wiss 13:489–497.
127.
Portmann A (1962) Cerebralisation und Ontogenese. Med Grundlagenforsch 4:1–62.
128.
Portmann A (1969) Einführung in die vergleichende Morphologie der Wirbeltiere, ed 4. Basel, Stuttgart: Schwabe und Co.
129.
Powers AS, Day LB (eds) (2003) Perspectives on the Evolution of Cognition. 14th Annual Karger Workshop Orlando. Brain Behav Evol 62:69–139.
130.
Price EO (1973) Some behavioral differences between wild and domestic Norway rats:
131.
Gnawing and platform jumping. Animal Learn Behav 1:312–316.
132.
Price EO (1984) Behavioral aspects of animal domestication. Q Rev Biol 59:1–32.
133.
Price EO, Belanger PL (1977) Maternal behavior of wild and domestic stocks of Norway rats. Behav Biol 20:60–69.
134.
Price EO, Huck UW (1976) Open-field behaviour of wild and domestic Norway rats. Animal Learn Behav 4:125–130.
135.
Price EO, Belanger PL, Duncan RA (1976) Competitive dominance of wild and domestic Norway rats (Rattus norvegicus). Anim Behav 24:589–599.
136.
Radinsky L (1977) Brains of early carnivores. Paleobiology 3:333–349.
137.
Reichstein H (1985) Haben ‘Primitivhunde’ eine geringere Hirnschädelkapazität als heutige Rassehunde? Z Säugetierkunde 50:294–301.
138.
Reiher EG (1969) Sinnesphysiologische und lernpsychologische Untersuchungen an Schweinen. Forma et Functio 1:353–404.
139.
Rempe U (1962): Über einige statistische Hilfsmittel moderner zoologisch-systematischer Untersuchungen. Zool Anz 169:93–140.
140.
Rempe U, Weber EE (1972) An illustration of the principal ideas of MANOVA. Biometrics 28:235–238.
141.
Richter CP (1949) The use of the wild Norway rat for psychiatric research. J Nervous Mental Disease 110:379–386.
142.
Richter CP (1954) The effect of domestication and selection on the behaviour of the Norway rat. J Nat Canc Inst 15:727–738.
143.
Röhrs M (1959a) Allometrische Untersuchungen an Canidengehirnen. Verh Dt Zool Ges 1958:295–307.
144.
Röhrs M (1959b) Neue Ergebnisse und Probleme der Allometrieforschung. Z Wiss Zool 162:1–95.
145.
Röhrs M (1966) Vergleichende Untersuchungen zur Evolution der Gehirne von Edentata. Z Zool Syst Evolut-forsch 4:196–207.
146.
Röhrs M (1985a) Cephalization, neocorticalization and the effects of domestication on brains of mammals. In: Functional Morphology in Vertebrates. (Duncker HR, Fleischer G, eds) pp 544–547. Stuttgart, New York: Fischer.
147.
Röhrs M (1985b) Cephalisation bei Feliden. Z Säugetierkunde 50:234–239.
148.
Röhrs M (1986a) Cephalisation, Telencephalisation und Neocorticalisation bei Musteliden. Z Zool Syst Evolut-forsch 24:157–166.
149.
Röhrs M (1986b) Cephalisation bei Caniden. Z Zool Syst Evolut-forsch 24:300–307.
150.
Röhrs M, Ebinger P (1978) Die Beurteilung von Hirngrößenunterschieden zwischen Wild- und Haustieren. Z Zool Syst Evolut-forsch 15:1–14.
151.
Röhrs M, Ebinger P (1998) Bemerkungen zu den intraspezifischen und interspezifischen Beziehungen Hirngewicht – Körpergewicht sowie Rückenmarksgewicht – Körpergewicht bei Caniden. Z Säugetierkunde 63:173–178.
152.
Röhrs M, Ebinger P, Weidemann W (1989) Cephalisation bei Viverridae, Hyaenidae, Procyonidae und Ursidae. Z Zool Syst Evolut-forsch 27:169–180.
153.
Romer AS (1966) Vertebrate Paleontology, ed. 3. Chicago IL: Chicago University Press.
154.
Rosenzweig MR (1971) Effects of environment on development of brain and of behaviour. In: Biopsychology of Development (Tobach E, Aronson L, eds) pp 303–342. New York: Academic Press.
155.
Rosenzweig MR, Bennett EL (1972) Cerebral changes in rats exposed individually to an enriched environment. J Comp Physiol Psych 80:304–313.
156.
Rosenzweig MR, Love W, Bennett EL (1968) Effects of a few hours a day enriched experience on brain chemistry and brain weights. Physiol Behav 3:819–825.
157.
Rosenzweig MR, Krech D, Bennett L, Diamond MC (1962) Effects on environmental complexity and training on brain chemistry and anatomy. J Comp Physiol Psychol 55:429–437.
158.
Roth G (2000) Evolution der Nervensysteme und Gehirne. In: Lexikon der Neurowissenschaften (Hanser H, Scholtyssek C, eds) Vol 1, pp 433–439. Heidelberg: Spektrum Akademischer Verlag.
159.
Savolainen P, Zhang Y-P, Luo J, Lundeberg J, Leitner T (2002) Genetic evidence for an East Asian origin of domestic dogs. Science 298:1610–1613.
160.
Schleifenbaum C (1973) Untersuchungen zur postnatalen Ontogenese des Gehirns von Grosspudeln und Wölfen. Z Anat Entwickl-gesch 141:179–205.
161.
Schmidt K (1992) Skull variability of Mustela nivalis Linnaeus, 1766 in Poland. Acta Theriol 37:141–162.
162.
Schreiner L, Kling A (1956) Rhinencephalon and behavior. Am J Physiol 184:486–490.
163.
Schultz W (1969) Zur Kenntnis des Hallstromhundes (Canis hallstromi Throughton, 1957). Zool Anz 183:47–72.
164.
Schumacher U (1963) Quantitative Untersuchungen an Gehirnen mitteleuropäischer Musteliden. J Hirnforsch 6:137–163.
165.
Shackelford RM (1949) Origin of the American ranch-bred mink. Am Fur Breeder 22:12–14.
166.
Snell O (1892) Die Abhängigkeit des Hirngewichts von dem Körpergewicht und den geistigen Fähigkeiten. Arch Psychiat 23:436–446.
167.
Stahnke A (1987) Verhaltensunterschiede zwischen Wild- und Hausmeerschweinchen. Z Säugetierkunde 52:294–307.
168.
Starck D (1975) Embryologie. Stuttgart: Thieme Verlag.
169.
Starck D (1982) Vergleichende Anatomie der Wirbeltiere auf evolutionsbiologischer Grundlage. Vol 3. Berlin: Springer-Verlag.
170.
Starck D (1995) Säugetiere. In: Lehrbuch der speziellen Zoologie (Starck D ed) Vol II, parts 5/1, 5/2. Jena: Fischer Verlag.
171.
Steffen K (2000) Vergleichender quantitativer Nachweis sowie topographische Analyse von Ganglienzellen und Zapfen in der Retina von Wildmink (Mustela vison energumenos) und Farmmink (Mustela vison f. dom.). Diss. thesis, Math.-Naturwiss. Fak., Universität Kiel.
172.
Steffen K, Kruska D, Tiedemann R (2001) Postnatal brain size decrease, visual performance, learning, and discrimination ability of juvenile and adult American mink (Mustela vison: Carnivora: Mammalia). Mamm Biol 66:269–280.
173.
Stephan H (1960) Methodische Studien über den quantitativen Vergleich architektonischer Struktureinheiten des Gehirns. Z Wiss Zool 164:143–172.
174.
Stephan H (1972) Evolution of primate brains: A comparative anatomical investigation. In: The Functional and Evolutionary Biology of Primates (Tuttle R, ed) pp 155–174. Chicago: Aldine/Atherton Inc.
175.
Stephan H (1975) Allocortex. In: Handbuch der mikroskopischen Anatomie des Menschen. Vol 4 Nervensystem, Part 9 (Bargmann W, ed) Heidelberg, Berlin, New York: Springer Verlag.
176.
Stephan H, Baron G, Frahm HD (1988) Comparative size of brains and brain components. In: Comparative Primate Biology, Vol 4, Neurosciences (Steklis HD, Erwin J, eds) pp 1–38. New York: Liss.
177.
Stephan H, Baron G, Frahm HD (1991) Insectivora. New York: Springer-Verlag.
178.
Stephan H, Frahm H, Baron G (1981) New and revised data on volumes of brain structures in insectivores and primates. Folia Primatol 35:1–29.
179.
Thenius E (1969) Stammesgeschichte der Säugetiere (einschliesslich der Hominiden). Hdb Zool Vol 8, part 2. Berlin: De Gruyter.
180.
Thiede U (1966) Zur Evolution von Hirneigenschaften mitteleuropäischer und südamerikanischer Musteliden. I. Innerartliche Ausformung und zwischenartliche Unterschiede äußerlich sichtbarer Merkmale. Z Zool Syst Evolut-forsch 4:318–377.
181.
Thiede U (1973) Zur Evolution von Hirneigenschaften mitteleuropäischer und südamerikanischer Musteliden. II. Quantitative Untersuchungen an Gehirnen südamerikanischer Musteliden. Z Säugetierkunde 38:208–215.
182.
Ulevicus A, Sidorovich V, Lauzhel G (2001) Specificity of non-metric parameters of American mink (Mustela vison) populations in relation to habitat differences in Belarus. Mamm Biol 66:35–47.
183.
Weidemann W (1970a) Vergleichende Untersuchungen an Gehirnen südamerikanischer Nagetiere. Z Wiss Zool 181:67–139.
184.
Weidemann W (1970b) Die Beziehungen von Hirngewicht und Körpergewicht bei Wölfen und Pudeln sowie deren Kreuzungsgenerationen N 1 und N 2. Z Säugetierkunde 35:238–247.
185.
Weiskrantz L (ed) (1985) Animal Intelligence. Oxford: Clarendon Press.
186.
Welker W (1990) Why does cerebral cortex fissure and fold? A review of determinants of gyri and sulci. In: Cerebral Cortex. Vol 8b. Comparative Structure and Evolution of Cerebral Cortex, Part II. (Jones EG, Peters A, eds) pp 3–136. New York: Plenum Press.
187.
Wigger H (1939) Vergleichende Untersuchungen am Auge von Wild- und Hausschwein unter besonderer Berücksichtigung der Retina. Z Morph Ökol Tiere 36:1–20.
188.
Wiig O (1982) Bone resorption in the skull of Mustela vison. Acta Theriol 27:358–360.
189.
Wiig O (1985) Multivariate variation in feral American mink (Mustela vison) from southern Norway. J Zool 206:441–452.
190.
Wirz K (1950) Studien über die Cerebralisation: zur quantitativen Bestimmung der Rangordnung bei Säugetieren. Acta Anat 9:134–196.
191.
Zeuner FE (1963) A History of Domesticated Animals. London: Hutchinson.
192.
Zimen E (1971) Wölfe und Königspudel. Vergleichende Verhaltensbeobachtungen. München: Piper.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.