Skip to main content
Log in

The learning of action sequences through social transmission

  • Original Paper
  • Published:
Animal Cognition Aims and scope Submit manuscript

Abstract

Previous empirical work on animal social learning has found that many species lack the ability to learn entire action sequences solely through reliance on social information. Conversely, acquiring action sequences through asocial learning can be difficult due to the large number of potential sequences arising from even a small number of base actions. In spite of this, several studies report that some primates use action sequences in the wild. We investigate how social information can be integrated with asocial learning to facilitate the learning of action sequences. We formalize this problem by examining how learners using temporal difference learning, a widely applicable model of reinforcement learning, can combine social cues with their own experiences to acquire action sequences. The learning problem is modeled as a Markov decision process. The learning of nettle processing by mountain gorillas serves as a focal example. Through simulations, we find that the social facilitation of component actions can combine with individual learning to facilitate the acquisition of action sequences. Our analysis illustrates that how even simple forms of social learning, combined with asocial learning, generate substantially faster learning of action sequences compared to asocial processes alone, and that the benefits of social information increase with the length of the action sequence and the number of base actions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Berg ME, Grace RC (2006) Initial-link duration and acquisition of preference in concurrent chains. Learn Behav 34(1):50–60

    Article  PubMed  Google Scholar 

  • Biro D, Inoue-Nakamura N, Tonooka R, Yamakoshi G, Sousa C, Matsuzawa T (2003) Cultural innovation and transmission of tool use in wild chimpanzees: evidence from field experiments. Anim Cogn 6(4):213–223

    Article  PubMed  Google Scholar 

  • Boesch C, Boesch H (1982) Optimisation of nut-cracking with natural hammers by wild chimpanzees. Behaviour 88(3):265–286

    Google Scholar 

  • Boyd R, Richerson PJ (1985) Culture and the evolutionary process. University of Chicago Press, Chicago

  • Brass M, Heyes C (2005) Imitation: is cognitive neuroscience solving the correspondence problem? Trends Cogn Sci 9(10):489–495

    Article  PubMed  Google Scholar 

  • Buhmann MD (2000) Radial basis functions. Acta Numer 2000(9):1–38

    Article  Google Scholar 

  • Bush R, Mosteller F (1951) A mathematical model for simple learning. Psychol Rev 58(5):313

    Article  CAS  PubMed  Google Scholar 

  • Byrne RW (1999) Cognition in great ape ecology. Skill-learning ability opens up foraging opportunities. Symp Zool Soc Lond 72:333–350

    Google Scholar 

  • Byrne RW (2003) Imitation as behaviour parsing. Philos Trans R Soc B 358(1431):529–536

    Article  CAS  Google Scholar 

  • Byrne RW, Byrne JM (1993) Complex leaf-gathering skills of mountain gorillas (Gorilla g. beringei): variability and standardization. Am J Primatol 31(4):241–261

    Article  Google Scholar 

  • Byrne RW, Russon AE (1998) Learning by imitation: a hierarchical approach. Behav Brain Sci 21(5):667–684

    CAS  PubMed  Google Scholar 

  • Call J, Tomasello M (1995) Use of social information in the problem solving of orangutans (Pongo pygmaeus) and human children (Homo sapiens). J Comp Psychol 109(3):308

    Article  CAS  PubMed  Google Scholar 

  • Custance D, Whiten A, Fredman T (1999) Social learning of an artificial fruit task in capuchin monkeys (Cebus apella). J Comp Psychol 113(1):13

    Article  Google Scholar 

  • Custance D, Whiten A, Sambrook T, Galdikas B (2001) Testing for social learning in the” artificial fruit” processing of wildborn orangutans (Pongo pygmaeus), Tanjung Puting, Indonesia. Anim Cogn 4(3–4):305–313

    Article  CAS  PubMed  Google Scholar 

  • Dayan P, Niv Y (2008) Reinforcement learning: the good, the bad and the ugly. Curr Opin Neurobiol 18(2):185–196

    Article  CAS  PubMed  Google Scholar 

  • Enquist M, Eriksson K, Ghirlanda S (2007) Critical social learning: a solution to Rogers's paradox of nonadaptive culture. Am Anthropol 109(4):727–734

    Google Scholar 

  • Eriksson K, Enquist M, Ghirlanda S (2007) Critical points in current theory of conformist social learning. J Evol Psychol 5(1):67–87

    Article  Google Scholar 

  • Fantino E, Preston RA, Dunn R (1993) Delay reduction: current status. J Exp Anal Behav 60(1):159–169

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Glimcher PW (2011) Understanding dopamine and reinforcement learning: the dopamine reward prediction error hypothesis. Proc Natl Acad Sci USA 108(15):647–654

    Google Scholar 

  • Goodall J (1964) Tool-using and aimed throwing in a community of free-living chimpanzees. Nature 201:1264

    Article  CAS  PubMed  Google Scholar 

  • Grace RC (1994) A contextual model of concurrent-chains choice. J Exp Anal Behav 61(1):113–129

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Henrich J, Boyd R (1998) The evolution of conformist transmission and the emergence of between-group differences. Evol Hum Behav 19(4):215–241

    Article  Google Scholar 

  • Heyes CM (1994) Social learning in animals: categories and mechanisms. Biol Rev 69(2):207–231

    Article  CAS  PubMed  Google Scholar 

  • Heyes CM (2009) Evolution, development and intentional control of imitation. Philos Trans R Soc B 364(1528):2293–2298

    Article  Google Scholar 

  • Heyes CM, Galef BG (1996) Social learning in animals: the roots of culture. Elsevier, Amsterdam

    Google Scholar 

  • Hoppitt W, Laland KN (2008) Social processes influencing learning in animals: a review of the evidence. Adv Stud Behav 38:105–165

    Article  Google Scholar 

  • Hoppitt W, Laland K (2013) Social learning: an introduction to mechanisms, methods, and models. Princeton University Press, Princeton

    Book  Google Scholar 

  • Hoppitt W, Blackburn L, Laland KN (2007) Response facilitation in the domestic fowl. Anim Behav 73(2):229–238

    Article  Google Scholar 

  • Laland KN, Galef BG (2009) The question of animal culture. Harvard University Press, Cambridge

    Google Scholar 

  • Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG, Graves A, Riedmiller M, Fidjeland AK, Ostrovski G et al (2015) Human-level control through deep reinforcement learning. Nature 518(7540):529–533

    Article  CAS  PubMed  Google Scholar 

  • Ottoni EB, Izar P (2008) Capuchin monkey tool use: overview and implications. Evol Anthropl Issues, News Rev 17(4):171–178

    Article  Google Scholar 

  • Pan WX, Schmidt R, Wickens JR, Hyland BI (2005) Dopamine cells respond to predicted events during classical conditioning: evidence for eligibility traces in the reward-learning network. J Neurosci 25(26):6235–6242

    Article  CAS  PubMed  Google Scholar 

  • Racey D, Young ME, Garlick D, Pham JNM, Blaisdell AP (2011) Pigeon and human performance in a multi-armed bandit task in response to changes in variable interval schedules. Learn Beahv 39(3):245–258

    Article  Google Scholar 

  • Reid AK, Chadwick CZ, Dunham M, Miller A (2001) The development of functional response units: the role of demarcating stimuli. J Expt Anal Behav 76(3):303–320

    Article  CAS  Google Scholar 

  • Rescorla RA, Wagner AR (1972) A theory of Pavlovian conditioning: variations in the effectiveness of reinforcement and nonreinforcement. In: Black AH, Prokasy WF (eds) Classical conditioning: current research and theory. Appleton-Century-Crofts, New York, pp 64–99

    Google Scholar 

  • Rogers AR (1988) Does Biology Constrain Culture? Am Anthropol 90(4):819–831

    Article  Google Scholar 

  • Sanz C, Call J, Morgan D (2009) Design complexity in termite-fishing tools of chimpanzees (Pan troglodytes). Biol Lett 5(3):293–296

    Article  PubMed Central  PubMed  Google Scholar 

  • Seymour B, O’Doherty JP, Dayan P, Koltzenburg M, Jones AK, Dolan RJ, Friston KJ, Frackowiak RS (2004) Temporal difference models describe higher-order learning in humans. Nature 429(6992):664–667

    Article  CAS  PubMed  Google Scholar 

  • Stoinski TS, Whiten A (2003) Social learning by orangutans (Pongo abelii and Pongo pygmaeus) in a simulated food-processing task. J Comp Psychol 117(3):272

    Article  PubMed  Google Scholar 

  • Sutton RS, Barto AG (1990) Time-derivative models of Pavlovian reinforcement. In: Gabriel M, Moore J (eds) Learning and computational neuroscience: foundations of adaptive networks. MIT Press, Cambridge, pp 497-537

    Google Scholar 

  • Sutton RS, Barto AG (1998) Reinforcement learning: AN introduction, vol 1. Cambridge Univ Press, Cambridge

    Google Scholar 

  • Tan M (1993) Multi-agent reinforcement learning: independent vs. cooperative agents. In: Proceedings of the tenth international conference on machine learning, pp 330–337

  • Tennie C, Hedwig D, Call J, Tomasello M (2008) An experimental study of nettle feeding in captive gorillas. Am J Primatol 70(6):584–593

    Article  PubMed  Google Scholar 

  • Terkel J (1996) Cultural transmission of feeding behavior. In: Heyes CM, Galef BG (eds) Social learning in animals: the roots of culture. Elsevier, Amsterdam, p 17

    Chapter  Google Scholar 

  • Terrace HS (2005) The simultaneous chain: a new approach to serial learning. Trends Cogn Sci 9(4):202–210

    Article  PubMed  Google Scholar 

  • Thorndike EL (1898) Animal intelligence: an experimental study of the associative processes in animals. Psychol Monogr Gen Appl 2(4):1–109

    Article  Google Scholar 

  • Whiten A (1998) Imitation of the sequential structure of actions by chimpanzees (Pan troglodytes). J Comp Psychol 112(3):270

    Article  CAS  PubMed  Google Scholar 

  • Whiten A, Goodall J, McGrew WC, Nishida T, Reynolds V, Sugiyama Y, Tutin CE, Wrangham RW, Boesch C (1999) Cultures in chimpanzees. Nature 399(6737):682–685

    Article  CAS  PubMed  Google Scholar 

  • Zentall TR, Galef BG Jr (1988) Social learning: psychological and biological perspectives. Lawrence Erlbaum Associates, Hillsdale

    Google Scholar 

Download references

Acknowledgments

The authors thank Richard Byrne for his very helpful comments. DC thanks Magnus Enquist and Johan Lind for countless inspiring conversations and in particular for pointing out the importance of sequence learning, and the potential of Markov decision processes for modeling such learning problems. This research was supported by a grant from The John Templeton Foundation.

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical standard

This article does not contain any studies with human participants or animals performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Cownden.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Whalen, A., Cownden, D. & Laland, K. The learning of action sequences through social transmission. Anim Cogn 18, 1093–1103 (2015). https://doi.org/10.1007/s10071-015-0877-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10071-015-0877-x

Keywords

Navigation