Skip to main content
Log in

Are faecal hormone levels linked to winter progression, diet quality and social rank in young ungulates ? An experiment with white-tailed deer (Odocoileus virginianus) fawns

  • Original Paper
  • Published:
Behavioral Ecology and Sociobiology Aims and scope Submit manuscript

Abstract

Hormones play a central role in the physiology and behaviour of animals. The recent development of noninvasive techniques has increased information on physical and social states of individuals through hormone measurements. The relationships among hormones, life history traits and behaviours are, however, still poorly known. For the first time, we evaluated natural winter glucocorticoid and testosterone levels in young ungulates in relation to winter progression, diet quality and social rank. Overwinter, levels of glucocorticoid and testosterone decreased, possibly due to the decline of fawns’ body mass. The relationships between hormone levels and diet quality were surprising: Fawns fed the control diet presented higher glucocorticoid and lower testosterone levels then fawns fed the poor diet, suggesting that control fawns faced a higher nutritional stress than those on the poor diet. Similarly to other studies on social mammals, we found no relationship between faecal glucocorticoid levels and social rank, suggesting that social stress was similar for dominant and subordinate fawns during winter. Testosterone levels were not correlated to social rank as found previously in groups of individuals forming stable social hierarchies and maintaining stable dominance relationships. The simultaneous suppression of glucocorticoid and testosterone levels suggests for the first time that young ungulates present a hormonal strategy to prevent fast depletion of limited proteins and fat resources during winter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Altmann J (1974) Observational study of behavior: sampling methods. Behaviour 49:227–267

    Article  PubMed  CAS  Google Scholar 

  • Bouissou MF (1995) Relations sociales, conduites agressives et réactivité émotionnelle chez les ongulés: influence des stéroïdes sexuels. Prod Anim 8:71–82

    Google Scholar 

  • Boonstra R (2005) Equipped for life: the adaptive role of the stress axis in male mammals. J Mammal 86:236–247

    Article  Google Scholar 

  • Bubenick GA, Miller KV, Lister AL, Osborn DA, Bartos L, Van Der Kraak GJ (2005) Testosterone and estradiol concentrations in serum, velvet skin, and growing antler bone of male white-tailed deer. J Exp Zool 303A:186–192

    Article  Google Scholar 

  • Côté SD (2000a) Dominance hierarchies in female mountain goats: stability, aggressiveness and determinants of rank. Behaviour 137:1541–1566

    Article  Google Scholar 

  • Côté SD (2000b) Determining social rank in ungulates: a comparison of aggressive interactions recorded at a bait site and under natural conditions. Ethology 106:945–955

    Article  Google Scholar 

  • Côté SD (2005) Extirpation of a large black bear population by introduced white-tailed deer. Conserv Biol 19:1668–1671

    Article  Google Scholar 

  • Creel S (2001) Social dominance and stress hormones. Trends Ecol Evol 16:491–497

    Article  Google Scholar 

  • Creel S (2005) Dominance, aggression, and glucocorticoid levels in social carnivores. J Mammal 86:255–264

    Article  Google Scholar 

  • Creel S, Sands JL (2003) Is social stress a consequence of subordination or a cost of dominance? In: Tyack P, de Waal F (eds) Animal social complexity. Harvard University Press, Cambridge, pp 153–179

    Google Scholar 

  • Creel S, Creel NM, Monfort SL (1996) Social stress and dominance. Nature 379:212

    Article  CAS  Google Scholar 

  • Creel S, Creel NM, Mills MGL, Monfort SL (1997) Rank and reproduction in cooperatively breeding African wild dogs: behavioral and endocrine correlates. Behav Ecol 8:298–306

    Article  Google Scholar 

  • de Vries H (1995) An improved test of linearity in dominance hierarchies containing unknown or tied relationships. Anim Behav 50:1375–1389

    Article  Google Scholar 

  • de Vries H (1998) Finding a dominance order most consistent with a linear hierarchy: a new procedure and review. Anim Behav 55:827–843

    Article  PubMed  Google Scholar 

  • DelGiudice GD, Kerr KD, Mech LD, Riggs NR, Seal US (1998) Urinary 3-methylhistidine and progressive winter undernutrition in white-tailed deer. Can J Zool 76:2090–2095

    Article  CAS  Google Scholar 

  • Dumont A, Crête M, Ouellet J-P, Huot J, Lamoureux J (2000) Population dynamics of northern white-tailed deer during mild winters: evidence of regulation by food competition. Can J Zool 78:764–776

    Article  Google Scholar 

  • Foley CAH, Papageorge S, Wasser SK (2001) Noninvasive stress and reproductive measures of social and ecological pressures in free-ranging African elephants. Conserv Biol 15:1134–1142

    Article  Google Scholar 

  • Goymann W, East ML, Watcher B, Höner OP, Möstl E, Hofer H (2003) Social status does not predict corticosteroid levels in postdispersal male spotted hyenas. Horm Behav 43:474–479

    Article  PubMed  CAS  Google Scholar 

  • Gray PB, Servello FA (1995) Energy intake relationships for white-tailed deer on winter browse diets. J Wildl Manage 59:147–152

    Article  Google Scholar 

  • Halls LK (1984) White-tailed deer: ecology and management. Harrisburg, PA, Stackpole Books, p 870

    Google Scholar 

  • Hennessy MB, Heybach JP, Vernikos J, Levine S (1979) Plasma corticosterone concentrations sensitively reflect levels of stimulus intensity in the rat. Physiol Behav 22:821–825

    Article  PubMed  CAS  Google Scholar 

  • Huot J (1982) Body condition and food resources of white-tailed deer on Anticosti Island, Québec. PhD thesis, University of Alaska

  • Jensen PG, Pekins PJ, Holter JB (1999) Compensatory effect of the heat increment of feeding on thermoregulation costs of white-tailed deer fawns in winter. Can J Zool 77:1474–1485

    Article  Google Scholar 

  • Ketterson ED, Nolan VJ (1992) Hormones and life histories: an integrative approach. Am Nat 140:S33–S62

    Article  PubMed  Google Scholar 

  • Ketterson ED, Nolan VJ, Wolf L, Ziegenfus C, Dufty AM, Ball GF, Johnsen TS (1991) Testosterone and avian life histories: the effect of experimentally elevated testosterone on corticosterone and body mass in dark-eyed juncos. Horm Behav 25:489–503

    Article  PubMed  CAS  Google Scholar 

  • Kitaysky AS, Piatt JF, Wingfield JC, Romano M (1999a) The adrenocortical stress-response of black-legged kittiwake chicks in relation to dietary restrictions. J Comp Physiol B 169:303–310

    Article  CAS  Google Scholar 

  • Kitaysky AS, Wingfield JC, Piatt JF (1999b) Dynamics of food availability, body condition and physiological stress response in breeding black-legged kittiwakes. Funct Ecol 13:577–584

    Article  Google Scholar 

  • Lefort S, Tremblay J-P, Fournier F, Potvin F, Huot J (2007) Importance of balsam fir as winter forage for white-tailed deer at the northeastern limit of their distribution range. Ecoscience 14:109–116

    Article  Google Scholar 

  • Le Ninan F, Cherel Y, Sardet C, Le Maho Y (1988) Plasma hormone levels in relation to lipid and protein metabolism during prolonged fasting in king penguin chicks. Gen Comp Endocrinol 71:331–337

    Article  PubMed  Google Scholar 

  • Li C, Jiang Z, Jiang G, Fang J (2001) Seasonal changes of reproductive behavior and fecal steroid concentrations in Père David’s deer. Horm Behav 40:518–525

    Article  PubMed  CAS  Google Scholar 

  • Li C, Jiang Z, Zeng Y, Yan C (2004) Relationship between serum testosterone, dominance and mating success in Père David’s deer stags. Ethology 110:681–691

    Article  Google Scholar 

  • Lincoln GA, Kay RNB (1979) Effects of season on the secretion of LH and testosterone in intacts and castrated red deer stags (Cervus elaphus). J Reprod Fertil 55:75–80

    PubMed  CAS  Google Scholar 

  • Littell RC, Miliken GA, Stroup WW, Wolfinger R (1996) SAS system for mixed models: random coefficient models. Cary, North Carolina, SAS Publishing

    Google Scholar 

  • Miller KV, Marchinton RL, Forand KJ, Johansen KL (1987) Dominance, testosterone levels, and scraping activity in a captive herd of white-tailed deer. J Mammal 68:812–817

    Article  Google Scholar 

  • Millspaugh JJ, Washburn BE (2003) Within-sample variation of fecal glucocorticoid measurements. Gen Comp Endocrinol 132:21–26

    Article  PubMed  CAS  Google Scholar 

  • Millspaugh JJ, Woods RJ, Hunt KE, Raedeke KJ, Brundige GC, Washburn BE, Wasser SK (2001) Fecal glucocorticoid assays and the physiological stress response of elk. Wildl Soc Bull 29:899–907

    Google Scholar 

  • Millspaugh JJ, Washburn BE, Milanick WA, Beringer J, Hansen LP, Meyer TM (2002) Non-invasive techniques for stress assessment in white-tailed deer. Wildl Soc Bull 30:899–907

    Google Scholar 

  • Moen AN (1976) Energy conservation by white-tailed deer in the winter. Ecology 57:192–198

    Article  Google Scholar 

  • Monfort SL, Wasser SK, Mashburn KL, Burke M, Brewer BA, Creel SR (1997) Steroid metabolism and validation of noninvasive endocrine monitoring in the African wild dog (Lycaon pictus). Zoo Biol 16:533–548

    Article  CAS  Google Scholar 

  • Möstl E, Palme R (2002) Hormones as indicators of stress. Domest Anim Endocrinol 23:67–74

    Article  PubMed  Google Scholar 

  • Möstl E, Maggs JL, Schrötter G, Besenfelder U, Palme R (2002) Measurements of cortisol metabolites in faeces of ruminants. Vet Res Commun 26:127–139

    Article  PubMed  Google Scholar 

  • Muller MN, Wrangham RW (2004) Dominance, cortisol and stress in wild chimpanzees (Pan troglodytes shweinfurthii). Behav Ecol Sociobiol 55:332–340

    Article  Google Scholar 

  • Nelson RJ (1999) An introduction to behavioral endocrinology, 2nd edn. Sunderland, Sinauer

    Google Scholar 

  • Noldus Information Technology (1998) Matman, reference manual, version 1.0 for Windows. Wageningen, The Netherlands

  • Patton ML, White AM, Swaisgood RR, Sproul RL, Fetter GA, Kennedy J, Edwards MS, Rieches RG, Lance VA (2001) Aggression control in a bachelor herd of Fringe-Eared Oryx (Oryx gazella callotis), with melengestrol acetate: behavioral and endocrine observations. Zoo Biol 20:375–388

    Article  CAS  Google Scholar 

  • Pelletier F, Bauman J, Festa-Bianchet M (2003) Fecal testosterone in bighorn sheep (Ovis canadensis): behavioral and endocrine correlates. Can J Zool 81:1678–1684

    Article  CAS  Google Scholar 

  • Pereira RJG, Duarte JMB, Negrao JA (2005) Seasonal changes in fecal testosterone concentrations and their relationship to the reproductive behavior, antler cycle and grouping patterns in free-ranging male Pampas deer (Ozotoceros bezoarticus beozarticus). Theriogenology 63:2113–2125

    Article  PubMed  CAS  Google Scholar 

  • Potvin F, Breton L (2005) Testing two aerial survey techniques on deer in fenced enclosures: visual double-counts and thermal infrared sensing. Wildl Soc Bull 33:317–325

    Article  Google Scholar 

  • Potvin F, Beaupré P, Laprise G (2003) The eradication of balsam fir stands by white-tailed deer on Anticosti Island, Québec: a 150-year process. Ecoscience 10:487–495

    Google Scholar 

  • Reeder DM, Kramer KM (2005) Stress in free-ranging mammals: integrating physiology, ecology, and natural history. J Mammal 86:225–235

    Article  Google Scholar 

  • Robbins MM, Czekala NM (1997) A preliminary investigation of urinary testosterone and cortisol levels in wild male mountain gorillas. Am J Primatol 43:51–64

    Article  PubMed  CAS  Google Scholar 

  • Romero LM, Ramenofsky M, Wingfield JC (1997) Season and migration alters the corticosterone response to capture and handling in an arctic migrant, the white-crowned sparrow (Zonotrichia leucophrys gambelii). Comp Biochem Physiol C 116:171–177

    PubMed  CAS  Google Scholar 

  • Romero LM, Soma KK, Wingfield JC (1998) Changes in pituitary and adrenal sensitivities allow the snow bunting (Plectrophenax nivalis), an Arctic-breeding song bird, to modulate corticosterone release seasonally. J Comp Physiol B 168:353–358

    Article  PubMed  CAS  Google Scholar 

  • Saltz D, White GC (1991) Urinary cortisol and urea nitrogen responses to winter stress in mule deer. J Wildl Manage 55:1–16

    Article  Google Scholar 

  • Sapolsky RM (1992) Cortisol concentrations and the social significance of rank instability among wild baboons. Psychoneuroendocrinology 17:701–709

    Article  PubMed  CAS  Google Scholar 

  • Sapolsky RM (1993) Neruroendocrinology of the stress-response. In: Becker JB (ed) Behavioral endocrinology. Massachusetts Institute of Technology Press, Cambridge, pp 287–324

    Google Scholar 

  • Sapolsky RM, Krey LC, McEwen BS (1986) The neuroendocrinology of stress and aging: the glucocorticoids cascade hypothesis. Endocr Rev 7:284–301

    Article  PubMed  CAS  Google Scholar 

  • Sapolsky RM, Romero LM, Munck AU (2000) How do glucocorticoids influence stress responses? Integrating permissice, suppressive, stimulatory, and preparative actions. Endocr Rev 21:55–89

    Article  PubMed  CAS  Google Scholar 

  • Sauvé DG, Côté SD (2007) Winter forage selection in white-tailed deer at high density: balsam fir is the best of a bad choice. J Wildl Manage 71:911–914

    Article  Google Scholar 

  • Sousa MBC, Albuquerque ACSR, Albuquerque FS, Araujo A, Yamamoto ME, Arruda MF (2005) Behavioral strategies and hormonal profiles of dominant and subordinate common marmoset (Callithrix jacchus) females in wild monogamous groups. Am J Primatol 67:37–50

    Article  PubMed  CAS  Google Scholar 

  • Stewart M, Bowyer RT, Kie JG, Gasaway WC (1999) Antler size relative to body mass in moose: tradeoffs associated with reproduction. Alces 36:77–83

    Google Scholar 

  • Taillon J, Côté SD (2006) The role of previous social encounters and body mass in determining social rank: an experiment with white-tailed deer. Anim Behav 72:1103–1110

    Article  Google Scholar 

  • Taillon J, Côté SD (2007) Social rank and winter forage quality affect aggressiveness in white-tailed deer fawns. Anim Behav 74:265–275

    Article  Google Scholar 

  • Taillon J, Sauvé DG, Côté SD (2006) The effects of decreasing winter diet quality on foraging behavior and life-history traits of white-tailed deer fawns. J Wildl Manage 70:1445–1454

    Article  Google Scholar 

  • Thompson KV (1993) Aggressive behavior and dominance hierarchies in female sable antelope, Hippotragus niger: implications for captive management. Zoo Biol 12:189–202

    Article  Google Scholar 

  • Tremblay JP, Thibault I, Dussault C, Huot J, Côté SD (2005) Long-term decline in white-tailed deer browse supply: can lichens and litterfall act as alternate food sources that preclude density-dependent feedbacks? Can J Zool 83:1087–1096

    Article  Google Scholar 

  • van Schaik CP, van Noordwijk MA, van Bragt T, Blankenstein MA (1991) A pilot study of the social correlates of levels of urinary cortisol, prolactin, and testosterone in wild long-tailed macaques (Macaca fascicularis). Primates 32:345–356

    Article  Google Scholar 

  • Walker SL, Waddell WT, Goodrowe KL (2002) Reproductive endocrine patterns in male and female red wolves (Canis rufus) assessed by fecal and serum hormone analysis. Zoo Biol 21:321–335

    Article  Google Scholar 

  • Wasser SK, Hunt KE, Brown JL, Cooper K, Crockett CM, Bechert U, Millspaugh JJ, Larson S, Monfort SL (2000) A generalized fecal glucocorticoid assay for use in a diverse array of nondomestic mammalian and avian species. Gen Comp Endocrinol 120:260–275

    Article  PubMed  CAS  Google Scholar 

  • Whitten PL, Brockman DK, Stavisky RC (1998) Recent advances in noninvasive techniques to monitor hormone-behavior interactions. Yearb Phys Anthropol 41:1–23

    Article  Google Scholar 

  • Wikelski M, Steiger SS, Gall B, Nelson KN (2004) Sex, drugs, and mating role: testosterone-induced phenotype-switching in Galapagos marine iguanas. Behav Ecol 16:260–268

    Article  Google Scholar 

  • Wingfield JC, Romero LM (2001) Adrenocortical responses to stress and their modulation in free-living vertebrates. In: McEwen BS, Goodman HM (eds) Handbook of physiology: a critical, comprehensive presentation of physiological knowledge and concepts. Oxford University Press, Oxford, pp 211–234

    Google Scholar 

  • Wingfield JC, Hegner RE, Dufty AM Jr, Ball GF (1990) The “challenge hypothesis”: theoretical implications for patterns of testosterone secretion, mating systems, and breeding strategies. Am Nat 136:829–846

    Article  Google Scholar 

  • Wingfield JC, Deviche P, Sharbaugh S, Astheimer LB, Holberton R, Suydam R, Hunt K (1994) Seasonal changes of the adrenocortical responses to stress in Redpolls, Acanthis flammea, in Alaska. J Exp Zool 270:372–380

    Article  Google Scholar 

Download references

Acknowledgments

We thank A. Tousignant, D. Duteau and D. Sauvé for assistance with data collection, maintenance of the enclosure and companionship in the field. We are grateful to L. Breton, M.-L. Coulombe, F. Fournier, A. Massé, G. Picard, A. Simard and J.-P. Tremblay for help with deer captures. We also thank S. De Bellefeuille, S. Hamel, and R. B.Weladji for discussions and valuable comments and insights on draft versions of the manuscript. Corticosterone RIA and determination of testosterone metabolite concentrations were performed at York University by the staff of the Reproductive Physiology Department of the Toronto Zoo (C. Gilman, S. Hayden, T. Keeley, K. Lockyear and R. Spindler). This study was funded by a grant from the Fonds québécois de recherche sur la nature et les technologies (FQRNT) to S. D. Côté, the Natural Sciences and Engineering Research Council of Canada (NSERC)–Produits forestiers Anticosti Research Chair and the Centre d’études nordiques (CEN). The Laval University Animal Care and Use Committee approved all procedures (reference number 2001-275).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steeve D. Côté.

Additional information

Communicated by P. Banks

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taillon, J., Côté, S.D. Are faecal hormone levels linked to winter progression, diet quality and social rank in young ungulates ? An experiment with white-tailed deer (Odocoileus virginianus) fawns. Behav Ecol Sociobiol 62, 1591–1600 (2008). https://doi.org/10.1007/s00265-008-0588-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00265-008-0588-2

Keywords

Navigation