Skip to main content
Log in

Egocentric search for disappearing objects in domestic dogs: evidence for a geometric hypothesis of direction

  • Original Article
  • Published:
Animal Cognition Aims and scope Submit manuscript

Abstract

In several species, the ability to locate a disappearing object is an adaptive component of predatory and social behaviour. In domestic dogs, spatial memory for hidden objects is primarily based on an egocentric frame of reference. We investigated the geometric components of egocentric spatial information used by domestic dogs to locate an object they saw move and disappear. In experiment 1, the distance and the direction between the position of the animal and the hiding location were put in conflict. Results showed that the dogs primarily used the directional information between their own spatial coordinates and the target position. In experiment 2, the accuracy of the dogs in finding a hidden object by using directional information was estimated by manipulating the angular deviation between adjacent hiding locations and the position of the animal. Four angular deviations were tested: 5, 7.5, 10 and 15°. Results showed that the performance of the dogs decreased as a function of the angular deviations but it clearly remained well above chance, revealing that the representation of the dogs for direction is precise. In the discussion, we examine how and why domestic dogs determine the direction in which they saw an object disappear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • American Kennel Club (1992) The complete dog book, 18th edn. Howell Book House, New York

    Google Scholar 

  • Bennett ADT (1993) Spatial memory in a food-storing corvid. I. Near tall landmarks are primarily used. J Comp Physiol A 173:193–207

    Article  Google Scholar 

  • Bremner JG (1978a) Egocentric versus allocentric spatial coding in nine-month-old infants: factors influencing the choice of code. Dev Psychol 14:346–355

    Article  Google Scholar 

  • Bremner JG (1978b) Spatial errors made by infants: inadequate spatial cues or evidence of egocentrism? Br J Psychol 69:77–84

    PubMed  CAS  Google Scholar 

  • Brownell PH (1984) Prey detection by the sand scorpion. Sci Am 251:86–97

    Article  Google Scholar 

  • Cartwright BA, Collett TS (1982) How honeybees use landmarks to guide their return to a food source. Nature 295:560–564

    Article  Google Scholar 

  • Cartwright BA, Collett TS (1983) Landmark learning in bees. J Comp Physiol 151A:521–543

    Article  Google Scholar 

  • Chapuis N (1982) Référentiels spatiaux utilisés dans la réalisation d’un trajet inverse chez le chien. Annee Psychol 82:75–100

    Google Scholar 

  • Chapuis N, Thinus-Blanc C, Poucet B (1983) Dissociation of mechanisms involved in dogs’ oriented displacements. Q J Exp Psychol 35B:213–219

    Google Scholar 

  • Chapuis N, Varlet C (1987) Short cuts by dogs in natural surrounding. Q J Exp Psychol 39B:49–64

    Google Scholar 

  • Cheng K (1986) A purely geometric module in the rat’s spatial representation. Cognition 23:149–178

    Article  PubMed  CAS  Google Scholar 

  • Cheng K (1988) Some psychophysics of the pigeon’s use of landmarks. J Comp Physiol 162A:815–826

    Article  Google Scholar 

  • Cheng K (1989) The vector sum model of pigeon landmark use. J Exp Psychol (Anim Behav) 15:366–375

    Article  Google Scholar 

  • Cheng K (1990) More psychophysics of the pigeon’s use of landmarks. J Comp Physiol 166A:857–863

    Google Scholar 

  • Cheng K (1994) The determination of direction in landmark-based spatial search in pigeons: a further test of the vector sum model. Anim Learn Behav 22:291–301

    Google Scholar 

  • Cheng K (1998) Distances and directions are computed separately by honeybees in landmarks-based search. Anim Learn Behav 26:455–468

    Google Scholar 

  • Cheng K, Sherry D (1992) Landmark-based spatial memory in birds (Parus atricapillus and Columba livia): the use of edges and distances to represent spatial positions. J Comp Psychol 106:331–341

    Article  Google Scholar 

  • Cheng K, Spetch ML (1998) Mechanisms of landmark use in mammals and birds. In: Healy S (ed) Spatial representation in animals. Oxford University Press, New York, pp 1–17

    Google Scholar 

  • Collett TS, Cartwright BA, Smith BA (1986) Landmark learning and visuo-spatial memories in gerbils. J Comp Physiol 158A:835–851

    Article  Google Scholar 

  • Ellard CG, Goodale MA, Timney B (1984) Distance estimation in the Mongolian Gerbil: the role of dynamic depth cues. Behav Brain Res 14:29–39

    Article  PubMed  CAS  Google Scholar 

  • Étienne AS, Joris-Lambert S, Dahn-Hurni C, Reverdin B (1995a) Optimizing visual landmarks: two- and three-dimensional minimal landscapes. Anim Behav 49:165–179

    Article  Google Scholar 

  • Étienne AS, Joris-Lambert S, Maurer R, Reverdin B, Sitbon S (1995b) Optimizing distal landmarks: horizontal versus vertical structures and relation to background. Behav Brain Res 68:103–116

    Article  PubMed  Google Scholar 

  • Etienne AS, Berlie J, Georgakopoulos J, Maurer R (1998) Role of dead reckoning in navigation. In: Healy S (ed) Spatial representation in animals. Oxford University Press, New York, pp 55–68

    Google Scholar 

  • Étienne AS, Teroni E, Hurni C, Portenier V (1990) The effect of a single light cue on homing behaviour of the golden hamster. Anim Behav 39:17–41

    Article  Google Scholar 

  • Fiset S, Doré FY (1996) Spatial encoding in domestic cats (Felis catus). J Exp Psychol (Anim Behav) 22:420–437

    Article  CAS  Google Scholar 

  • Fiset S, Beaulieu C, Landry F (2003) Duration of dogs’ (Canis familiaris) working memory in search for disappearing objects. Anim Cogn 6:1–10

    PubMed  Google Scholar 

  • Fiset S, Gagnon S, Beaulieu C (2000) Spatial encoding of hidden objects in dogs (Canis familiaris). J Comp Psychol 114:315–324

    Article  PubMed  CAS  Google Scholar 

  • Gallistel CR (1990) The organization of learning. MIT Press, Cambridge, Mass.

    Google Scholar 

  • Gould-Beierle K, Kamil A (1996) The use of local and global cues by Clark’s nutcrackers (Nicifraga columbiana). Anim Behav 52:519–528

    Article  Google Scholar 

  • Gould-Beierle K, Kamil AC (1998) Use of landmarks in three species of food-storing corvids. Ethology 104:361–378

    Article  Google Scholar 

  • Harrison R, Nissen HW (1941) Spatial separation in the delayed response performance of chimpanzees. J Comp Psychol 31:427–435

    Article  Google Scholar 

  • Kamil AC, Jones JE (1997) The seed storing corvid Clark’s nutcracker learns geometric relationships among landmarks. Nature 390:276–279

    Article  CAS  Google Scholar 

  • Kamil AC, Jones JE (2000) Geometric rule learning by Clark’s nutcrackers (Nucifraga columbiana). J Exp Psychol (Anim Behav) 26:439–453

    Article  CAS  Google Scholar 

  • Kelly DM, Spetch ML, Heth CD (1998) Pigeons’ (Columbia livia) encoding of geometric and featural properties of a spatial environment. J Comp Psychol 112:259–269

    Article  Google Scholar 

  • Jones JE, Kamil AC (2001) The use of relative and absolute bearings by Clark’s Nutcrackers, Nucifraga columbiana. Anim Learn Behav 29:120–132

    Google Scholar 

  • Jones JE, Antoniadis E, Shettleworth S, Kamil AC (2002) A comparative study of geometric rule learning by nutcrackers (Nucifraga columbiana), pigeons (Columba livia), and jackdaws (Corvus monedula). J Comp Psychol 116:350–356

    Article  PubMed  Google Scholar 

  • Margules J, Gallistel CR (1988) Heading in the rat: determination by environmental shape. Anim Learn Behav 16:404–410

    Google Scholar 

  • Nadel L (1990) Varieties of spatial cognition: psychobiological considerations. In: Diamond A (ed) The development and neural bases of higher cognitive functions. Academic Press, New York, pp 613–626

    Google Scholar 

  • Neiworth JJ, Steinmark E, Basile BM, Wonders R, Steely F, DeHart C (2003) A test of object permanence in a new-world mondey species, cotton top tamarins (Saguinus oedipus). Anim Cogn 6:27–37

    PubMed  Google Scholar 

  • O’Keefe J, Nadel L (1978) The hippocampus as a cognitive map. Clarendon, Oxford, England

    Google Scholar 

  • Pick HL, Lockman JJ (1981) From frames of reference to spatial representations. In: Liben LS, Patterson AH, Newcombe N (eds) Spatial representation and behavior across the life span: theory and application. Academic Press, New York, pp 39–61

    Google Scholar 

  • Séguinot V, Cattet J, Benhamou S (1998) Path integration in dogs. Anim Behav 55:787–797

    Article  PubMed  Google Scholar 

  • Siegal S, Castellan NJ (1988) Nonparametric statistics for behavioural sciences. 2nd edn. McGraw-Hill, New York

    Google Scholar 

  • Sovrano VA, Bisazza A, Vallortigara G (2002) Modularity and spatial information reorientation in a simple mind: encoding of geometric and nongeometric properties of spatial environment by fish. Cognition 85:51–59

    Article  Google Scholar 

  • Sovrano VA, Bisazza A, Vallortigara G (2003) Modularity as a fish views it: conjointing geometric and nongeometric information for spatial reorientation. J Exp Psychol (Anim Behav) 29:199–210

    Article  Google Scholar 

  • Spetch ML (1995) Overshadowing in landmark learning: touch-screen studies with pigeons and humans. J Exp Psychol (Anim Behav) 21:166–181

    Article  CAS  Google Scholar 

  • Spetch ML, Mondlock MV (1993) Control of pigeons’ spatial search by graphic landmarks in a touch-screen task. J Exp Psychol: Anim Behav Proc 19:353–372

    Article  Google Scholar 

  • Spetch ML, Cheng K, Mondlock MV (1992) Landmark use by pigeons in a touch-screen spatial search task. Anim Learn Behav 20:281–292

    Google Scholar 

  • Spetch ML, Cheng K, MacDonald SE (1996) Learning the configuration of a landmark array, I: touch-screen studies with pigeons and humans. J Comp Psychol 110:55–68

    Article  PubMed  CAS  Google Scholar 

  • Spetch ML, Cheng K, MacDonald SE, Linkenhoker BA, Kelly DM, Doerkson SR (1997) Learning the configuration of a landmark array in pigeons and humans. II. generality across search tasks. J Comp Psychol 111:14–24

    Article  Google Scholar 

  • Tolman EC (1948) Cognitive maps in rats and men. Psychol Rev 55:189–208

    Article  CAS  PubMed  Google Scholar 

  • Thinus-Blanc C (1996) Animal spatial cognition: behavioral and neural approaches. World Scientific, Singapore

    Google Scholar 

  • Tomlinson WT, Johnson TD (1991) Hamsters remember spatial information derived from olfactory cues. Anim Learn Behav 9:135–139

    Google Scholar 

  • Vallortigara G, Zanforlin M, Pasti G (1990) Geometric modules in animals’ spatial representation: a test with chicks (Gallus gallus domesticus). J Comp Psychol 104:248–254

    Article  PubMed  CAS  Google Scholar 

  • Vargas JP, Lopez JC, Salas C, Thinus-Blanc C (2004) Encoding of geometric spatial information by Goldfish (Carassius auratus). J Comp Psychol 118:206–216

    Article  PubMed  Google Scholar 

  • Wallace GK (1959) Visual scanning in the desert locust Schistocera gregaria Foskal. J Exp Biol 36:512–525

    Google Scholar 

  • Wehner R, Michel B, Antonsen P (1996) Visual navigation in insects: coupling of egocentric and geocentric information. J Exp Biol 199:129–140

    PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by an operating research grant from the Natural Sciences and Engineering Research Council of Canada and by a research grant from the Faculté des Études Supérieures et de la Recherche of the Université de Moncton. The experiments received approval from the Comité de Protection des Animaux from the Faculté des Etudes Supérieures et de la Recherche of the Université de Moncton, which is responsible for the application and enforcement of rules of the Canadian Council on Animal Care. We thank the owners of the dogs who participated in these experiments

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvain Fiset.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fiset, S., Landry, F. & Ouellette, M. Egocentric search for disappearing objects in domestic dogs: evidence for a geometric hypothesis of direction. Anim Cogn 9, 1–12 (2006). https://doi.org/10.1007/s10071-005-0255-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10071-005-0255-1

Keywords

Navigation