Skip to main content
Log in

Exploration of virtual mazes by rhesus monkeys (Macaca mulatta)

  • Original Article
  • Published:
Animal Cognition Aims and scope Submit manuscript

Abstract

A chasm divides the huge corpus of maze studies found in the literature, with animals tested in mazes on the one side and humans tested with mazes on the other. Advances in technology and software have made possible the production and use of virtual mazes, which allow humans to navigate computerized environments and thus for humans and nonhuman animals to be tested in comparable spatial domains. In the present experiment, this comparability is extended even further by examining whether rhesus monkeys (Macaca mulatta) can learn to explore virtual mazes. Four male macaques were trained to manipulate a joystick so as to move through a virtual environment and to locate a computer-generated target. The animals succeeded in learning this task, and located the target even when it was located in novel alleys. The search pattern within the maze for these animals resembled the pattern of maze navigation observed for monkeys that were tested on more traditional two-dimensional computerized mazes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

Notes

  1. Throughout this article, responses to the virtual maze are described using the terminology of traversing a real maze. Of course, when the cursor was moved upward, the animal did not literally move forward through the maze; rather, the screen image continuously changed when the joystick was moved to give the appearance of movement through space (i.e., stimuli got larger, providing the perspective that they were getting closer). The monkeys may not have seen these changes as "moving through the maze"—indeed, this issue motivated experiment 2. Notwithstanding, it is much easier and clearer to describe the animals' behavior as if they were advancing and turning within the virtual maze.

References

  • Astur RS, Ortiz ML, Sutherland RJ (1998) A characterization of performance by men and women in a virtual Morris water task: a large and reliable sex difference. Behav Brain Res 93:185–190

    Article  CAS  PubMed  Google Scholar 

  • Astur RS, Taylor LB, Mamelak AN, Philpott L, Sutherland RJ (2002) Humans with hippocampus damage display severe spatial memory impairments in a virtual Morris water task. Behav Brain Res 132:77–84

    Article  PubMed  Google Scholar 

  • Bliss JP, Tidwell PD, guest MA (1997) The effectiveness of virtual reality for administering spatial navigation training to firefighters. Pres Teleoper Virt Environ 6:73–86

    Google Scholar 

  • Caplan JB, Kahana M J, Sekuler R, Kirschen M Madsen JR (2000) Task dependence of human theta: the case for multiple cognitive functions. Neurocomputing 32–33:659–665

    Google Scholar 

  • Darken RP, Banker WP (1998) Navigating in natural environments: a virtual environment training transfer study. In: Proceedings of the Virtual Reality Annual International Symposium (VRAIS), IEEE Computer Society Press, Los Alamitos, Calif., pp 12–19

  • Darwish M, Koranyi L, Nyakas C, Almeida OFX (2001) Exposure to a novel stimulus reduces anxiety level in adult and aging rats. Physiol Behav 72:403–407

    Article  CAS  PubMed  Google Scholar 

  • Egsegian R, Pittman K, Farmer K, Zobel R (1993) Practical applications of virtual reality to firefighter training. In: Proceedings of the 1993 Simulations Multiconference on the International Emergency Management and Engineering Conference, Society of Computer Simulation, San Diego, Calif., pp 155–160

  • Fragaszy DM, Johnson-Pynn J, Hirsh E, Brake KE (2002) Strategic navigation of two-dimensional alley mazes: comparing capuchin monkeys and chimpanzees. Anim Cogn DOI 10.1007/s10071-002-0137-8

  • Franzen MD (2000) Reliability and validity in neuropsychological assessment. Kluwer/Plenum, New York

  • Gillner S, Mallot H (1998) Navigation and acquisition of spatial knowledge in a virtual maze. J Cogn Neurosci 10:445–463

    Article  CAS  PubMed  Google Scholar 

  • Groen G, Wunderlich AP, Spitzer M, Tomczak R, Riepe MW (2000) Brain activation during human navigation: gender-different neural networks as substrate of performance. Nat-Neurosci 3:404–408

    Google Scholar 

  • Hemmi JM, Menzel CR (1995) Foraging strategies of long-tailed macaques, Macaca fascicularis: directional exploration. Anim Behav 49:457–464

    Article  Google Scholar 

  • Iversen IH, Matsuzawa T (2003) Acquisition of symbolic "hunting" by chimpanzees (Pan troglodytes) in an automated interception task. Anim Cogn DOI 10.1007/s10071-003-0175-x

  • Kahana MJ, Sekuler R, Caplan JB, Kirschen M, Madsen JR (1999) Human theta oscillations exhibit task dependence during virtual maze navigation. Nature 399:781–784

    Article  CAS  PubMed  Google Scholar 

  • Lawton CA, Morrin KA (1999) Gender differences in pointing accuracy in computer-simulated 3D mazes. Sex Roles 40:73–92

    Article  Google Scholar 

  • Leighty KA, Fragaszy DM (2003a) Primates in cyberspace: using interactive computer tasks to study perception and action in nonhuman animals. Anim Cogn DOI 10.1007/s10071-003-0177-8

  • Leighty KA, Fragaszy DM (2003b) Joystick acquisition in tufted capuchins (Cebus apella). Anim Cogn DOI 10.1007/s10071-003-0176-9

  • Lipp H-P, Pleskacheva MG, Gossweiler H, Ricceri L, Smirnova AA, Garin NN, Perepiolkina OP, Voronkov DN, Kuptsov PA Del'Omo G (2000) A large outdoor radial maze for comparative studies in birds and mammals. Neurosci Biobehav Rev 25:83–99

    Article  Google Scholar 

  • Lister RG (1987) The use of a plus-maze to measure anxiety in the mouse. Psychopharmacology 92:180–185

    CAS  PubMed  Google Scholar 

  • McGonigle B, Chalmers M, Dickinson A (2003) Concurrent disjount and resiprocal classification by Cebus apella in seriation tasks: evidence for hierarchical organization. Anim Cogn DOI 10.1007/s10071-003-0174-y

  • Moffat SD, Hampson E, Hatzipantelis M (1998) Navigation in a "virtual" maze: sex differences and correlation with psychometric measures of spatial ability in humans. Evol Hum Behav 19:73–87

    Article  Google Scholar 

  • Morris RGM (1981) Spatial localization does not require the presence of local cues. Learn Motiv 12:239–260

    Google Scholar 

  • Mushiake H, Saito N, Sakamoto K, Sato Y, Tanji J (2001) Visually based path-planning by Japanese monkeys. Cogn Brain Res 11:165–169

    Article  CAS  Google Scholar 

  • Okazaki S, Kitahama T, Miura T, Shinohara K (2000) Changes in eye-head body movements during maze learning. Percept Mot Skills91: 1230

    Google Scholar 

  • Olton DS (1977) Spatial memory. Sci Am 236:82–98

    CAS  Google Scholar 

  • Porteus S (1965) Porteus maze test: fifty years' application. Pacific Books, Palo Alto

    Google Scholar 

  • Regan EC, Price KR (1994) The frequency of occurrence and severity of side effects of immersion virtual reality. Aviat Space Environ Med 65:527–530

    CAS  PubMed  Google Scholar 

  • Regian JW, Shebilske WL, Monk JM (1992) Virtual reality: an instructional medium for visual-spatial tasks. J Commun 42:136–149

    Google Scholar 

  • Rumbaugh DM, Richardson WK, Washburn DA, Savage-Rumbaugh ES, Hopkins WD (1989) Rhesus monkeys (Macaca mulatta), video tasks, and implications for stimulus-response spatial contiguity. J Comp Psychol 103:32–38

    Article  CAS  PubMed  Google Scholar 

  • Savage-Rumbaugh ES (1986) Ape language: from conditioned response to symbol. Columbia University Press, New York

    Google Scholar 

  • Schmidt S (1997) Gender-related strategies in environmental development: effects of anxiety on wayfinding in and representation of a three-dimensional maze. J Environ Psychol 17:215–228

    Article  Google Scholar 

  • Shelton AL Gabrieli JD (2002) Neural Correlates of encoding space from route and survey perspectives. J Neurosci 22:2711–2717

    CAS  PubMed  Google Scholar 

  • Small WS (1900) An experimental study of the mental processes of the rat. Am J Psychol 7:272–285

    Google Scholar 

  • Small WS (1901) Experimental study of the mental processes of the rat II. Am J Psychol 12:206–239

    Google Scholar 

  • Sutherland RJ, Dyck RH (1984) Place navigation by rats in a swimming pool. Can J Psychol38:322–347

    Google Scholar 

  • Tolman EC, Richie BF, Kalish D 1946 Studies in spatial learning. I. orientation and the short-cut. J Exp Psychol 36:13–24

    Google Scholar 

  • Vauclair J, Fagot J (1993) Manual and hemispheric specialization in the manipulation of a joystick by baboons (Papio papio). Behav Neurosci 107:210–214

    Article  CAS  PubMed  Google Scholar 

  • Waller D (2000) Individual differences in spatial learning from computer-simulated environments. J Exp Psychol 6:307–321

    Article  CAS  Google Scholar 

  • Waller D, Knapp D, Hunt E (2001) Spatial representations of virtual mazes: the role of visual fidelity and individual differences. Hum Factors 43:147–158

    CAS  PubMed  Google Scholar 

  • Washburn DA (1992) Analyzing the path of responding in maze-solving and other tasks. Behav Res Methods Instrum Comput 24:248–252

    CAS  PubMed  Google Scholar 

  • Washburn DA, Rumbaugh DM (1992) Testing primates with joystick-based automated apparatus: lessons from the Language Research Center's computerized test system. Behav Res Methods Instrum Comput 24:157–164

    CAS  PubMed  Google Scholar 

  • Wechsler D (1974) Manual for the Wechsler Intelligence Scale for children—revised. The Psychological Corporation, New York

  • Witmer BG, Bailey JH, Knerr BW (1994) Training dismounted soldiers in virtual environments: route learning and transfer. In: Interservice/Industry Training System and Education Conference, National Defense Industrial Association, Orlando, pp 2–11

Download references

Acknowledgements

This research was supported by grants from the National Institute of Child Health and Human Development (HD38051) and the National Aeronautics and Space Administration (NAG2–1271) to Georgia State University. Additional support was provided by the College of Arts and Sciences of Georgia State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Washburn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Washburn, D.A., Astur, R.S. Exploration of virtual mazes by rhesus monkeys (Macaca mulatta). Anim Cogn 6, 161–168 (2003). https://doi.org/10.1007/s10071-003-0173-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10071-003-0173-z

Keywords

Navigation