Skip to main content
Log in

How owls structure visual information

  • Original Article
  • Published:
Animal Cognition Aims and scope Submit manuscript

Abstract

Recent studies on perceptual organization in humans claim that the ability to represent a visual scene as a set of coherent surfaces is of central importance for visual cognition. We examined whether this surface representation hypothesis generalizes to a non-mammalian species, the barn owl (Tyto alba). Discrimination transfer combined with random-dot stimuli provided the appropriate means for a series of two behavioural experiments with the specific aims of (1) obtaining psychophysical measurements of figure–ground segmentation in the owl, and (2) determining the nature of the information involved. In experiment 1, two owls were trained to indicate the presence or absence of a central planar surface (figure) among a larger region of random dots (ground) based on differences in texture. Without additional training, the owls could make the same discrimination when figure and ground had reversed luminance, or were camouflaged by the use of uniformly textured random-dot stereograms. In the latter case, the figure stands out in depth from the ground when positional differences of the figure in two retinal images are combined (binocular disparity). In experiment 2, two new owls were trained to distinguish three-dimensional objects from holes using random-dot kinematograms. These birds could make the same discrimination when information on surface segmentation was unexpectedly switched from relative motion to half-occlusion. In the latter case, stereograms were used that provide the impression of stratified surfaces to humans by giving unpairable image features to the eyes. The ability to use image features such as texture, binocular disparity, relative motion, and half-occlusion interchangeably to determine figure–ground relationships suggests that in owls, as in humans, the structuring of the visual scene critically depends on how indirect image information (depth order, occlusion contours) is allocated between different surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–f.
Fig. 2a–c.
Fig. 3a–f.
Fig. 4a, b.
Fig. 5a–e.
Fig. 6.

Similar content being viewed by others

References

  • Bakin JS, Nakayama K, Gilbert CD (2000) Visual responses in monkey areas v1 and v2 to three-dimensional surface configurations. J Neurosci 20:8188–8198

    CAS  PubMed  Google Scholar 

  • Caputo G (1996) The role of the background: texture segregation and figure-ground segmentation. Vision Res 36:2815–2826

    Article  CAS  PubMed  Google Scholar 

  • Castelo-Branco M, Goebel R, Neuenschwander S, Singer W (2000) Neural synchrony correlates with surface segregation rules. Nature 405:685–689

    Article  CAS  PubMed  Google Scholar 

  • Ee R van, Anderson BL, Farid H (2001) Occlusion junctions do not improve stereoacuity. Spat Vis 15:45–59

    Article  PubMed  Google Scholar 

  • Frost BJ, Cavanagh P, Morgan B (1988) Deep tectal cells in pigeons respond to kinematograms. J Comp Physiol [A] 162:639–647

  • Frost BJ, Wylie DR, Wang YC (1994) The analysis of motion in the visual system of birds. In: Davies MNO, Green PR (eds) Perception and motor control in birds: an ecological approach. Springer, Berlin Heidelberg New York, pp 248–269

    Google Scholar 

  • Green DM, Swets JA (1966) Signal detection theory and psychophysics. Wiley Interscience, New York

  • Hodos W (1970) Nonparametric index of response bias for use in detection and recognition experiments. Psychol Bull 74:351–354

    Google Scholar 

  • Hodos W, Bonbright JC (1972) The detection of visual intensity differences by pigeons. J Exp Anal Behav 18:471–479

    CAS  PubMed  Google Scholar 

  • Julesz B (1960) Binocular depth perception of computer-generated patterns. Bell Syst Technol J 39:1125–1162

    Google Scholar 

  • Julesz B (1962) Visual pattern discrimination. IRE Trans Inf Theory IT 8:84–92

    Google Scholar 

  • Julesz B (1971) Foundations of cyclopean perception. University of Chicago Press, Chicago

  • Julesz B (1981) Textons, the elements of texture perception, and their interactions. Nature 290:91–97

    CAS  PubMed  Google Scholar 

  • Julesz B (1994) Dialogues on perception. MIT Press, Cambridge, Mass.

  • Julesz B, Payne RA (1968) Differences between monocular and binocular stroboscopic movement perception. Vision Res 8:433–444

    CAS  PubMed  Google Scholar 

  • Kalpan G (1969) Kinetic disruption of optical texture: the perception of depth at an edge. Percept Psychophys 6:103–198

    Google Scholar 

  • Kanizsa G (1979) Organization in vision: essays on gestalt perception. Praeger, New York

    Google Scholar 

  • Knudsen EI (1989) Fused binocular vision is required for development of proper eye alignment in barn owls. Vis Neurosci 2:35–40

    CAS  Google Scholar 

  • Koffka K (1935) Principles of Gestalt psychology. Harcourt, New York

  • Liu L, Stevenson SB, Schor CM (1994) Quantitative stereoscopic depth without binocular correspondence. Nature 367:66–69

    CAS  PubMed  Google Scholar 

  • MacEvoy SP, Kim W, Paradiso MA (1998) Integration of surface information in primary visual cortex. Nat Neurosci 1:616–620

    Article  CAS  PubMed  Google Scholar 

  • Malik J, Anderson BL, Charowhas CE (1999) Stereoscopic occlusion junctions. Nat Neurosci 2:840–843

    Article  CAS  PubMed  Google Scholar 

  • Marr D (1976) Early processing of visual information. Philos Trans R Soc Lond B Biol Sci 275:483–519

    PubMed  Google Scholar 

  • Martin GR (1990) Birds by night. Poyser, London

  • Mattingley JB, Davis G, Driver J (1997) Preattentive filling-in of visual surfaces in parietal extinction. Science 275:671–674

    CAS  PubMed  Google Scholar 

  • Medina L, Reiner A (2000) Do birds possess homologues of mammalian primary visual, somatosensory and motor cortices? Trends Neurosci 23:1–12

    CAS  PubMed  Google Scholar 

  • Nakayama K, Shimojo S (1990) Da Vinci stereopsis: depth and subjective occluding contours from unpaired image points. Vision Res 30:1811–1825

    CAS  PubMed  Google Scholar 

  • Nakayama K, Shimojo S (1992) Experiencing and perceiving visual surfaces. Science 257:1357–1363

    CAS  PubMed  Google Scholar 

  • Nakayama K, Shimojo S, Silverman GH (1989) Stereoscopic depth: its relation to image segmentation, grouping, and the recognition of occluded objects. Perception 18:55–68

    CAS  Google Scholar 

  • Nakayama K, He ZJ, Shimojo S (1995) Visual surface representation: a critical link between lower-level and higher-level vision. In: Kosslyn SMO, Sherson DN (eds) Visual cognition. MIT Press, Cambridge, Mass., pp 1–67

  • Nieder A, Wagner H (1999) Perception and neuronal coding of subjective contours in the owl. Nat Neurosci 2:660–663

    Article  CAS  PubMed  Google Scholar 

  • Nieder A, Wagner H (2000) Horizontal-disparity tuning of neurons in the visual forebrain of the behaving barn owl. J Neurophysiol 83:2967–2979

    CAS  Google Scholar 

  • Nieder A, Wagner H (2001) Hierarchical processing of horizontal disparity information in the visual forebrain of behaving owls. J Neurosci 21:4514–4522

    CAS  PubMed  Google Scholar 

  • Ono H, Steinbach MJ (1990) Monocular stereopsis with and without head movement. Percept Psychophys 48:179–187

    CAS  Google Scholar 

  • Pettigrew JD (1979) Binocular visual processing in the owl's telencephalon. Proc R Soc Lond B Biol Sci 204:435–454

    CAS  PubMed  Google Scholar 

  • Pettigrew JD, Konishi M (1976) Neurons selective for orientation and binocular disparity in the visual Wulst of the barn owl (Tyto alba). Science 193:661–670

    Google Scholar 

  • Pollen DA (1999) On the neural correlates of visual perception. Cereb Cortex 9:4–19

    Article  CAS  PubMed  Google Scholar 

  • Shimojo S, Nakayama K (1990) Real world occlusion constraints and binocular rivalry. Vision Res 30:69–80

    CAS  PubMed  Google Scholar 

  • Shimojo S, Paradiso M, Fujita I (2001) What visual perception tells us about mind and brain. Proc Natl Acad Sci U S A 98:12340–12341

    Article  CAS  PubMed  Google Scholar 

  • Sugita Y (1999) Grouping of image fragments in primary visual cortex. Nature 401:269–272

    Article  CAS  PubMed  Google Scholar 

  • Treisman AM, Gelade G (1980) A feature-integration theory of attention. Cognit Psychol 12:97–136

    CAS  PubMed  Google Scholar 

  • Troje NF, Huber L, Loidolt M, Aust U, Fieder M (1999) Categorical learning in pigeons: the role of texture and shape in complex static stimuli. Vision Res 39:353–366

    Article  CAS  PubMed  Google Scholar 

  • Wagner H (1993) Sound-localization deficits induced by lesions in the barn owl's auditory space map. J Neurosci 13:371–386

    CAS  Google Scholar 

  • Wertheimer M (1923) Untersuchungen zur lehre von der gestalt. Psychol Forsch 4:301–350

    Google Scholar 

  • Wichmann FA, Hill NJ (2001a) The psychometric function I. Fitting, sampling, and goodness of fit. Percept Psychophys 63:1293–1313

    CAS  PubMed  Google Scholar 

  • Wichmann FA, Hill NJ (2001b) The psychometric function II. Bootstrap-based confidence intervals and sampling. Percept Psychophys 63:1314–1329

    CAS  PubMed  Google Scholar 

  • Willigen RF van der, Frost BJ, Wagner H (1998) Stereoscopic depth perception in the owl. Neuroreport 9:1233–1237

    PubMed  Google Scholar 

  • Willigen RF van der, Frost BJ, Wagner H (2002) Depth generalization from stereo to motion parallax in the owl. J Comp Physiol [A] 187:997–1007

  • Zhou H, Friedman SH, Heydt R von der (2000) Coding of border ownership in monkey visual cortex. J Neurosci 20:6594–6611

    CAS  PubMed  Google Scholar 

  • Zipser K, Lamme VA, Schiller PH (1996) Contextual modulation in primary visual cortex. J Neurosci 16:7376–7389

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the support of the Deutsche Forschungsgemeinschaft and the Humboldt Foundation. Harald Luksch and Sebastian Möller read and contributed to earlier versions of this manuscript and made many helpful comments. All experimental procedures complied with the "Principles of animal care" (publication no. 86-23, revised 1985) of the American National Institute of Health (NIH, http://www.nih.gov/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert F. van der Willigen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van der Willigen, R.F., Frost, B.J. & Wagner, H. How owls structure visual information. Anim Cogn 6, 39–55 (2003). https://doi.org/10.1007/s10071-003-0161-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10071-003-0161-3

Keywords

Navigation